IIn Vitro/I Osteogenesis Study of Shell Nacre Cement with Older and Young Donor Bone Marrow Mesenchymal Stem/Stromal Cells

Bone void-filling cements are one of the preferred materials for managing irregular bone voids, particularly in the geriatric population who undergo many orthopedic surgeries. However, bone marrow mesenchymal stem/stromal cells (BM-MSCs) of older-age donors often exhibit reduced osteogenic capacity....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioengineering (Basel) 2024-01, Vol.11 (2)
Hauptverfasser: Wilson, Bridget Jeyatha, Owston, Heather Elizabeth, Iqbal, Neelam, Giannoudis, Peter V, McGonagle, Dennis, Pandit, Hemant, Philipose Pampadykandathil, Lizymol, Jones, Elena, Ganguly, Payal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bone void-filling cements are one of the preferred materials for managing irregular bone voids, particularly in the geriatric population who undergo many orthopedic surgeries. However, bone marrow mesenchymal stem/stromal cells (BM-MSCs) of older-age donors often exhibit reduced osteogenic capacity. Hence, it is crucial to evaluate candidate bone substitute materials with BM-MSCs from the geriatric population to determine the true osteogenic potential, thus simulating the clinical situation. With this concept, we investigated the osteogenic potential of shell nacre cement (SNC), a bone void-filling cement based on shell nacre powder and ladder-structured siloxane methacrylate, using older donor BM-MSCs (age > 55 years) and young donor BM-MSCs (age < 30 years). Direct and indirect cytotoxicity studies conducted with human BM-MSCs confirmed the non-cytotoxic nature of SNC. The standard colony-forming unit-fibroblast (CFU-F) assay and population doubling (PD) time assays revealed a significant reduction in the proliferation potential (p < 0.0001, p < 0.05) in older donor BM-MSCs compared to young donor BM-MSCs. Correspondingly, older donor BM-MSCs contained higher proportions of senescent, β-galactosidase (SA-β gal)-positive cells (nearly 2-fold, p < 0.001). In contrast, the proliferation capacity of older donor BM-MSCs, measured as the area density of CellTracker[sup.TM] green positive cells, was similar to that of young donor BM-MSCs following a 7-day culture on SNC. Furthermore, after 14 days of osteoinduction on SNC, scanning electron microscopy with energy-dispersive spectroscopy (SEM-EDS) showed that the amount of calcium and phosphorus deposited by young and older donor BM-MSCs on SNC was comparable. A similar trend was observed in the expression of the osteogenesis-related genes BMP2, RUNX2, ALP, COL1A1, OMD and SPARC. Overall, the results of this study indicated that SNC would be a promising candidate for managing bone voids in all age groups.
ISSN:2306-5354
2306-5354
DOI:10.3390/bioengineering11020143