Characterization of the Bacterial Profile from Natural and Laboratory IGlossina/I Populations
Tsetse flies are large biting insects that inhabit much of tropical Africa and have a significant economic impact as the biological vectors of trypanosomes, which cause serious diseases to humans and livestock. A large array of bacteria, termed collectively symbionts, inhabit the internal organs of...
Gespeichert in:
Veröffentlicht in: | Insects (Basel, Switzerland) Switzerland), 2023-10, Vol.14 (11) |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Tsetse flies are large biting insects that inhabit much of tropical Africa and have a significant economic impact as the biological vectors of trypanosomes, which cause serious diseases to humans and livestock. A large array of bacteria, termed collectively symbionts, inhabit the internal organs of the flies’ body. These bacterial symbionts are involved in important aspects of the flies’ biology, including nutrition and reproduction. For instance, the main bacterial symbiont Wigglesworthia provides nutritional supplements necessary for host fertility and development, while Wolbachia is known to affect the reproduction of flies by causing a series of abnormalities. Therefore, the symbionts of tsetse flies show promising signs for exploitation and can be used for the development of innovative tools for the control of the flies and the diseases they carry. In this work, we used next-generation sequencing to characterize in detail the bacterial communities of four tsetse fly species. Their bacterial communities differed significantly, depending on the origin and the developmental stage of the flies. Certain important bacteria, such as Wigglesworthia and Sodalis, were present in all species and exhibited a high number of interactions with the other members of the bacterial community. Finally, Wolbachia was mostly present in G. morsitans samples. Tsetse flies (Glossina spp.; Diptera: Glossinidae) are viviparous flies that feed on blood and are found exclusively in sub-Saharan Africa. They are the only cyclic vectors of African trypanosomes, responsible for human African trypanosomiasis (HAT) and animal African trypanosomiasis (AAT). In this study, we employed high throughput sequencing of the 16S rRNA gene to unravel the diversity of symbiotic bacteria in five wild and three laboratory populations of tsetse species (Glossina pallidipes, G. morsitans, G. swynnertoni, and G. austeni). The aim was to assess the dynamics of bacterial diversity both within each laboratory and wild population in relation to the developmental stage, insect age, gender, and location. Our results indicated that the bacterial communities associated with the four studied Glossina species were significantly influenced by their region of origin, with wild samples being more diverse compared to the laboratory samples. We also observed that the larval microbiota was significantly different than the adults. Furthermore, the sex and the species did not significantly influence the formation of th |
---|---|
ISSN: | 2075-4450 2075-4450 |
DOI: | 10.3390/insects14110840 |