Essential Oils of IMentha arvensis/I and ICinnamomum cassia/I Exhibit Distinct Antibacterial Activity at Different Temperatures In Vitro and on Chicken Skin

The bacterial contamination of meat is a global concern, especially for the risk of Salmonella infection that can lead to health issues. Artificial antibacterial compounds used to preserve fresh meat can have negative health effects. We investigated the potential of natural essential oils (EOs), nam...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Foods 2023-10, Vol.12 (21)
Hauptverfasser: Vepštaitė-Monstavičė, Iglė, Ravoitytė, Bazilė, Būdienė, Jurga, Valys, Algirdas, Lukša, Juliana, Servienė, Elena
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The bacterial contamination of meat is a global concern, especially for the risk of Salmonella infection that can lead to health issues. Artificial antibacterial compounds used to preserve fresh meat can have negative health effects. We investigated the potential of natural essential oils (EOs), namely Mentha arvensis (mint) and Cinnamomum cassia (cinnamon) EOs, to prevent contamination of the food pathogen, Salmonella enterica subsp. enterica serotype Typhimurium, in vitro and on chicken skin. The gas chromatography–mass spectrometry (GC-MS) technique was used to determine the compositions of mint EO (MEO) and cinnamon EO (CEO); the most abundant compound in MEO was menthol (68.61%), and the most abundant compound was cinnamaldehyde (83.32%) in CEO. The antibacterial activity of MEO and CEO were examined in vapor and direct contact with S. typhimurium at temperatures of 4 °C, 25 °C, and 37 °C. The minimal inhibitory concentration at 37 °C for MEO and CEO reached 20.83 µL/mL, and the minimal bactericidal concentration of CEO was the same, while for MEO, it was two-fold higher. We report that in most tested conditions in experiments performed in vitro and on chicken skin, CEO exhibits a stronger antibacterial effect than MEO. In the vapor phase, MEO was more effective against S. typhimurium than CEO at 4 °C. In direct contact, the growth of S. typhimurium was inhibited more efficiently by MEO than CEO at small concentrations and a longer exposure time at 37 °C. The exploration of CEO and MEO employment for the inhibition of Salmonella bacteria at different temperatures and conditions expands the possibilities of developing more environment- and consumer-friendly antibacterial protection for raw meat.
ISSN:2304-8158
2304-8158
DOI:10.3390/foods12213938