Antioxidant and Cytotoxic Potential of ICarlina vulgaris/I Extract and Bioactivity-Guided Isolation of Cytotoxic Components

Carlina vulgaris is a poorly understood plant in the context of biological activity, despite its widespread application in ethnomedicine in numerous European countries. The aim of this study was to assess the cytotoxic potential of the plant against human colorectal adenocarcinoma (HT29) and to isol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Antioxidants 2023-09, Vol.12 (9)
Hauptverfasser: Sowa, Ireneusz, Paduch, Roman, Mołdoch, Jarosław, Szczepanek, Dariusz, Szkutnik, Jacek, Sowa, Paweł, Tyszczuk-Rotko, Katarzyna, Blicharski, Tomasz, Wójciak, Magdalena
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Carlina vulgaris is a poorly understood plant in the context of biological activity, despite its widespread application in ethnomedicine in numerous European countries. The aim of this study was to assess the cytotoxic potential of the plant against human colorectal adenocarcinoma (HT29) and to isolate the plant components linked to this effect. Ultra-high performance liquid chromatography with a high-resolution/quadrupole time-of-flight mass spectrometer (UHPLC–HR/QTOF/MS–PDA) was used for the phytochemical characterization of the extract. Liquid–liquid extraction and preparative chromatography were employed for fractionation purposes. Our investigation demonstrated that the ethyl acetate fraction from C. vulgaris showed significant cytotoxicity, and a bioactivity-guided approach led to the isolation of oxylipins, including traumatic acid, pinellic acid, and 9,10-dihydroxy-8-oxsooctadec-12-enic acid. The structures of the compounds were confirmed by nuclear magnetic resonance spectroscopy. Among these compounds, the last one exhibited significant cytotoxicity, though without selectivity, and traumatic acid was characterized by mild cytotoxicity. The cytotoxicity was linked to intracellular reactive oxygen species generation.
ISSN:2076-3921
2076-3921
DOI:10.3390/antiox12091704