A 3 dB Compact UWB Hybrid Coupler for 5G Millimeter-wave Applications
This paper presents a 3dB compact Ultra-Wide-Band (UWB) Substrate Integrated Gap Waveguide (SIGW) based hybrid coupler suitable for 5G mm-wave applications. It is a key component in signal processing for wireless communication. It provides a way to control the power distribution of the signal along...
Gespeichert in:
Veröffentlicht in: | Progress in electromagnetics research C Pier C 2023-07, Vol.135, p.23-34 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents a 3dB compact Ultra-Wide-Band (UWB) Substrate Integrated Gap Waveguide (SIGW) based hybrid coupler suitable for 5G mm-wave applications. It is a key component in signal processing for wireless communication. It provides a way to control the power distribution of the signal along different ports. It could be used to achieve beamforming and adaptive antenna system. The design steps started with implementing a unit cell of the gap waveguide structure satisfying the required bandwidth of the coupler. A supercell is then implemented. A network of complete ridges is constructed. A further step is to design a coupling section which achieves the required power distribution along the coupling and isolated ports. This coupling section is implemented using a novel approach of inserting an elliptical slot with variable major and minor axes with a certain orientation that achieves the standard performance of a 3 dB directional coupler with 90[degrees][+ or -]5% phase shift. For precise adjustment of this amplitude and phase, vias are further added perpendicular to the major axis of the slot. Its dimension and location have to be optimized. The Finite-Integral-Time-Domain (FDTD) analysis method is adopted (CST Microwave Studio). In addition, another novel approach is developed on this coupler such that the transition and gap layer is implemented on the same PCB layer, which saves the number of layers to only two layers compared to the usual three layers used in literature. Also, using SIGW technology saves the collapse of the top ground layer on the ridge structure, and only plastic pins are used to fix the two layers. The proposed coupler is fabricated and tested, and the results show that it serves the majority of frequency bands employed in 5G systems in the USA and Canada. |
---|---|
ISSN: | 1937-8718 1937-8718 |
DOI: | 10.2528/PIERC23042702 |