Non-Aqueous Solvent Mixtures for CO[sub.2] Capture: Choline Hydroxide-Based Deep Eutectic Solvents Absorbent Performance at Various Temperatures and Pressures
Carbon dioxide (CO[sub.2]) absorption in a non-aqueous solution is a potential technology for reducing greenhouse gas emissions. In this study, a non-aqueous solvent, sulfolane and dimethylsulfoxide (DMSO), was functionalized with a deep eutectic solvent (DES) consisting of choline hydroxide and pol...
Gespeichert in:
Veröffentlicht in: | Sustainability 2023-06, Vol.15 (12) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Carbon dioxide (CO[sub.2]) absorption in a non-aqueous solution is a potential technology for reducing greenhouse gas emissions. In this study, a non-aqueous solvent, sulfolane and dimethylsulfoxide (DMSO), was functionalized with a deep eutectic solvent (DES) consisting of choline hydroxide and polyamines diethylenetriamine (DETA) and triethylenetetramine (TETA). The non-aqueous absorbents’ CO[sub.2] absorption ability was investigated in a high-pressure absorption reactor with a variable absorption temperature (303.15–333.15 K) and pressure (350–1400 kPa). The results showed that 2M ChOH:TETA−DMSO solution had the highest CO[sub.2] loading capacity when compared with other screened solutions, such as 2M ChOH:TETA−Sulfolane, 2M ChOH:DETA−DMSO and 2M ChOH:DETA−Sulfolane. It was also found that the absorption capacity increased with increasing pressure and decreased with temperature. The highest CO[sub.2] absorption by 2M ChOH:TETA−DMSO was observed at a partial pressure of 1400 kPa at 303.15 K 1.2507 mol CO[sub.2]/mol DES. The use of a non-aqueous solvent in the mixture showed a phase separation phenomenon after the CO[sub.2] absorption reaction due to the formation of insoluble carbamate salt, which was identified through FTIR analysis. These findings suggest that the use of a DES polyamine mixed with a non-aqueous solvent could be a promising solution for CO[sub.2] capture. |
---|---|
ISSN: | 2071-1050 2071-1050 |
DOI: | 10.3390/su15129191 |