Characteristics and Application of a Novel Cold-Adapted and Salt-Tolerant Protease EK4-1 Produced by an Arctic Bacterium IMesonia algae/I K4-1

Mesonia algae K4-1 from the Arctic secretes a novel cold-adapted and salt-tolerant protease EK4-1. It has the highest sequence similarity with Stearolysin, an M4 family protease from Geobacillus stearothermophilus, with only 45% sequence identity, and is a novel M4 family protease. Ek4-1 has a low o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2023-04, Vol.24 (9)
Hauptverfasser: Rao, Hailian, Huan, Ran, Chen, Yidan, Xiao, Xun, Li, Wenzhao, He, Hailun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mesonia algae K4-1 from the Arctic secretes a novel cold-adapted and salt-tolerant protease EK4-1. It has the highest sequence similarity with Stearolysin, an M4 family protease from Geobacillus stearothermophilus, with only 45% sequence identity, and is a novel M4 family protease. Ek4-1 has a low optimal catalytic temperature (40 °C) and is stable at low temperatures. Moreover, EK4-1 is still active in 4 mol/L NaCl solution and is tolerant to surfactants, oxidizing agents and organic solvents; furthermore, it prefers the hydrolysis of peptide bonds at the P1' position as the hydrophobic residues, such as Leu, Phe and Val, and amino acids with a long side chain, such as Phe and Tyr. Mn[sup.2+]and Mg[sup.2+] significantly promoted enzyme activity, while Fe[sup.3+], Co[sup.+], Zn[sup.2+] and Cu[sup.2+] significantly inhibited enzyme activity. Amino acid composition analysis showed that EK4-1 had more small-side-chain amino acids and fewer large-side-chain amino acids. Compared with a thermophilic protease Stearolysin, the cold-adapted protease EK4-1 contains more random coils (48.07%) and a larger active pocket (727.42 Å[sup.3]). In addition, the acidic amino acid content of protease EK4-1 was higher than that of the basic amino acid, which might be related to the salt tolerance of protease. Compared with the homologous proteases EB62 and E423, the cold-adapted protease EK4-1 was more efficient in the proteolysis of grass carp skin, salmon skin and casein at a low temperature, and produced a large number of antioxidant peptides, with DPPH, ·OH and ROO· scavenging activities. Therefore, cold-adapted and salt-tolerant protease EK4-1 offers wide application prospects in the cosmetic and detergent industries.
ISSN:1422-0067
DOI:10.3390/ijms24097985