Genetic Determinants of Cardiovascular Disease: The Endothelial Nitric Oxide Synthase 3 , MiRNAs27a and Their Association with the Predisposition and Susceptibility to Coronary Artery Disease

Coronary artery disease (CAD) is an important cause of death worldwide. CAD is caused by genetic and other factors including hypertension, hyperlipidemia, obesity, stress, unhealthy diet, physical inactively, smoking and Type 2 diabetes (T2D). The genome wide association studies (GWASs) have reveale...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Life (Basel, Switzerland) Switzerland), 2022-11, Vol.12 (11)
Hauptverfasser: Mir, Rashid, Elfaki, Imadeldin, Javid, Jamsheed, Barnawi, Jameel, Altayar, Malik A, Albalawi, Salem Owaid, Jalal, Mohammed M, Tayeb, Faris J, Yousif, Aadil, Ullah, Mohammad Fahad, AbuDuhier, Faisel M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Coronary artery disease (CAD) is an important cause of death worldwide. CAD is caused by genetic and other factors including hypertension, hyperlipidemia, obesity, stress, unhealthy diet, physical inactively, smoking and Type 2 diabetes (T2D). The genome wide association studies (GWASs) have revealed the association of many loci with risk to diseases such as cancers, T2D and CAD. Nitric oxide (NO) is a potent vasodilator and is required for normal vascular health. It is produced in the endothelial cells in a reaction catalyzed by the endothelial NO synthase (eNOS). Methylenetetrahydrofolate reductase (MTHFR) is a very important enzyme involved in metabolism of folate and homocysteine, and its reduced function leads to cardiovascular disease. The Kr?ppel-like factor-14 (KLF-14) is an important transcriptional regulator that has been implicated in metabolic syndrome. MicroRNA (MiRNAs) are short non-coding RNAs that regulate the gene expression of proteins involved in important physiological processes including cell cycle and metabolism. In the present study, we have investigated the potential impact of germline pathogenic variants of endothelial eNOS, KLF-14, MTHFR, MiRNA-27a and their association with risk to CAD in the Saudi population. Methods: Amplification Refractory Mutation System (ARMS) PCR was used to detect MTHFR, KLF-14, miRNA-27a and eNOS3 genotyping in CAD patients and healthy controls. About 125 CAD cases and 125 controls were enrolled in this study and statistical associations were calculated including p-value, risk ratio (RR), and odds ratio (OD). Results: There were statistically significant differences (p < 0.05) in genotype distributions of MTHFR 677 C>T, KLF-14 rs972283 G>A, miRNAs27a rs895819 A>G and eNOS3 rs1799983 G>T between CAD patients and controls. In addition, our results indicated that the MTHFR-TT genotype was associated with increased CAD susceptibility with an OR 2.75 (95%) and p < 0.049, and the KLF14-AA genotype was also associated with increased CAD susceptibility with an OR of 2.24 (95%) and p < 0.024. Moreover, the miRNAs27a-GG genotype protects from CAD risk with an OR = 0.31 (0.016), p = 0.016. Our results also indicated that eNOS3 -GT genotype is associated with CAD susceptibility with an OR = 2.65, and p < 0.0003. Conclusion: The MTHFR 677C>T, KLF14 rs972283 G>A, miRNAs27a A>G, and eNOS3 rs1799983 G>T genotypes were associated with CAD susceptibility (p < 0.05). These findings require verification in future large-scal
ISSN:2075-1729
2075-1729
DOI:10.3390/life12111905