Optimization of the Production of Epichlorohydrin Catalyzed by TS-1 Using the Taguchi Method

Mass production of Epichlorohydrin (ECH) via epoxidizing allyl chloride suffers from determining the optimal reaction parameters and reproducibility. Titanium silicalite-1 (TS-1) catalyst has been successfully employed to reduce activation energy, but many reaction conditions are involved in the pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Chemical Society of Pakistan 2023-04, Vol.45 (2), p.93-93
Hauptverfasser: Rui Pan, Rui Pan, Rumeng Jiang, Rumeng Jiang, Yao Chen and Jiancheng Zhou, Yao Chen and Jiancheng Zhou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mass production of Epichlorohydrin (ECH) via epoxidizing allyl chloride suffers from determining the optimal reaction parameters and reproducibility. Titanium silicalite-1 (TS-1) catalyst has been successfully employed to reduce activation energy, but many reaction conditions are involved in the process. To optimize ECH production by analysing its yields, Taguchi method was implemented for reducing time and cost. Included in the reaction parameters were reaction temperature, reaction time and the reactant ratio. This study investigated preparation of heterogeneous catalysts using hydrothermal method and their characterization by XRD, IR, SEM and TEM, which confirmed the presence of ordered MFI structure. Plots of S/N suggested that reaction time was the most influential factor, followed by reaction time in ECH production. The optimum factor parameters were acquired as follows, a reaction time of 40 min, reaction temperature of 90 oC and the molar ratio of H2O2: allyl chloride equal to 1. Aimed at the final confirmation, ECH production experiment was also practiced. Established on the obtained results, the yield of ECH was hugely upgraded to the value of 83.13and#177;1.03 % with only ~0.7% deviated from predicted value.
ISSN:0253-5106
DOI:10.52568/001210/JCSP/45.02.2023