ISmilax china/I L. Polysaccharide Alleviates Dextran Sulphate Sodium-Induced Colitis and Modulates the Gut Microbiota in Mice
This work aimed to investigate the preventive effect of Smilax china L. polysaccharide (SCP) on dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) in mice. Smilax china L. polysaccharide was isolated by hot water extraction, ethanol precipitation, deproteinization, and purification using D...
Gespeichert in:
Veröffentlicht in: | Foods 2023-04, Vol.12 (8) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This work aimed to investigate the preventive effect of Smilax china L. polysaccharide (SCP) on dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) in mice. Smilax china L. polysaccharide was isolated by hot water extraction, ethanol precipitation, deproteinization, and purification using DEAE-cellulose column chromatography to yield three polysaccharides: SCP_C, SCP_A, and SCP_N. Acute colitis was induced by administering 3% (w/v) DSS in drinking water for 7 days. Sulfasalazine, SCP_C, SCP_A, and SCP_N were administered by gavage for 9 days. SCP_C, SCP_A, and SCP_N could significantly improve symptoms, as evidenced by the declining disease activity index (DAI), decreased spleen weight, increased length of the colon, and improved colonic histology. Moreover, SCP_C, SCP_A, and SCP_N increased serum glutathione and decreased the levels of pro-inflammatory cytokines, malondialdehyde, nitric oxide, and myeloperoxidase in colon tissues. Additionally, SCP_C, SCP_A, and SCP_N modulated gut microbiota via ascending the growth of Lachnospiraceae, Muribaculaceae, Blautia, and Mucispirillum and descending the abundance of Akkermansiaceae, Deferribacteraceae, and Oscillibacter in mice with UC. The results suggested that Smilax china L. polysaccharide ameliorates oxidative stress, balances inflammatory cytokines, and modulates gut microbiota, providing an effective therapeutic strategy for UC in mice. |
---|---|
ISSN: | 2304-8158 2304-8158 |
DOI: | 10.3390/foods12081632 |