The Effect of Banana Rhizosphere Chemotaxis and Chemoattractants on IBacillus velezensis/I LG14-3 Root Colonization and Suppression of Banana Fusarium Wilt Disease

Fusarium oxysporum f. sp. cubense (Foc) causes banana Fusarium wilt disease, which is a destructive soil-borne disease. Many plants can recruit rhizosphere microorganisms using their root exudates, thereby shaping the rhizosphere microbiome to resist pathogen infection. Therefore, this study was con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2022-12, Vol.15 (1)
Hauptverfasser: Yang, Lihua, Zhou, You, Guo, Lijia, Yang, Laying, Wang, Jun, Liang, Changcong, Huang, Junsheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fusarium oxysporum f. sp. cubense (Foc) causes banana Fusarium wilt disease, which is a destructive soil-borne disease. Many plants can recruit rhizosphere microorganisms using their root exudates, thereby shaping the rhizosphere microbiome to resist pathogen infection. Therefore, this study was conducted to explore the role of root exudates in the process of biocontrol strain colonization and resistance to pathogens. In this study, the banana root exudates used as chemoattractants were obtained by hydroponics. Bacillus velezensis strain LG14-3 was isolated from the infected area of the root system of banana and showed significant chemotaxis to banana root exudates and strong inhibition of Fusarium oxysporum f. sp. cubense. Further analysis found that LG14-3 showed chemotaxis toward the components of banana root exudates, such as citric acid, succinic acid, glycine, D-galactose and D-maltose, and glycine and citric acid, which resulted in more significant chemotaxis of LG14-3. Moreover, banana root exudates enhanced the swarming motility and biofilm formation of LG14-3. Pot experiments showed that glycine and citric acid enhanced the colonization ability of Bacillus velezensis LG14-3 in the banana rhizosphere and reduced the disease severity index of banana fusarium wilt. Glycine and citric acid enhanced the growth-promoting ability of LG14-3 under pathogen stress. Our results showed that the addition of chemotactic substances enhanced the biocontrol potential of Bacillus velezensis LG14-3 to prevent banana Fusarium wilt.
ISSN:2071-1050
2071-1050
DOI:10.3390/su15010351