Analysis of Volatile Secondary Metabolites in IOcimum basilicum/I Cell Suspensions: Inhibition, In Silico Molecular Docking, and an ADMET Analysis against Proteolytic Enzymes of IRhynchophorus ferrugineus/I
Our study’s overarching goal was to determine which O. basilicum cell suspensions approach yielded the most insecticidal and R. ferrugineus-inhibitory volatile secondary metabolites. After inoculation with Verticillium dahliae as an activator, the growth kinetics were measured, and the extract was i...
Gespeichert in:
Veröffentlicht in: | Plants (Basel) 2022-11, Vol.11 (21) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Our study’s overarching goal was to determine which O. basilicum cell suspensions approach yielded the most insecticidal and R. ferrugineus-inhibitory volatile secondary metabolites. After inoculation with Verticillium dahliae as an activator, the growth kinetics were measured, and the extract was identified using GC-MS. Validation was achieved for the insecticidal efficacy of a volatile extract, the pure phenolic content against larva and adult R. ferrugineus, and the inhibitory effect on proteases (in vivo and in vitro). The volatile extract achieved an LC[sub.50] of 1229 µg/mL and an LD[sub.50] of 13.8 µg/larva. The LC[sub.50] values for β-bergamotene, α-eudesmol, β-farnesene, linalool, 1,8-cineole, eugenol, α-guaiene, and β-caryophyllene were 1294, 1312, 1356, 1398, 1426, 1459, 1491, and 1523 g/mL, respectively. The LD[sub.50] activities of α-eudesmol, linalool, 1,8-cineole, eugenol, and nerol were 12.4, 13.7, 13.9, 14.2, and 15.6 g/larva, respectively. Active volatile extract of O. basilicum inhibited trypsin proteinase, elastase, cysteine, overall protease, and metalloprotease activity with IC[sub.50] values of 89.4, 101.7, 394.7, 112.4, and 535.2 µg/mL and 178.5, 192.4, 547.3, 208.3, and 924.8 µg/mL, in vitro and in vivo, respectively. There was evidence of action against total proteases (in vitro) with IC[sub.50] values of 78.9, 81.2, 88.6, 90.7, 91.5, 97.6, 107.4, and 176.3 µg/mL for β-bergamotene, α-eudesmol, β-farnesene, linalool, 1,8-cineole, eugenol, α-guaiene, and β-caryophyllene, respectively. Total proteases (in vivo) are inhibited by the α-eudesmol, linalool, 1,8-cineole, eugenol, nerol, and (E)-β-ocimene, with IC[sub.50] values of 162.3, 192.7, 193.1, 201.4, 248.6, and 273.2 µg/mL, respectively. ADMET and molecular docking modeling were the only two methods used to conduct in-depth computational analyses of compounds. The study recommended using an efficient cell suspension method to produce a volatile extract rich in useful secondary metabolites that may be utilized as a bio-insecticide. |
---|---|
ISSN: | 2223-7747 2223-7747 |
DOI: | 10.3390/plants11212949 |