ICitrullus colocynthis/I-Mediated Green Synthesis of Silver Nanoparticles and Their Antiproliferative Action against Breast Cancer Cells and Bactericidal Roles against Human Pathogens
The present study investigated the biomedical potential of eco-friendly Citrullus colocynthis-mediated silver nanoparticles (Cc-AgNPs). The antibacterial efficacy of Cc-AgNPs was evaluated against two multidrug-resistant pathogenic bacterial strains, Escherichia coli and Pseudomonas aeruginosa. The...
Gespeichert in:
Veröffentlicht in: | Nanomaterials (Basel, Switzerland) Switzerland), 2022-10, Vol.12 (21) |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The present study investigated the biomedical potential of eco-friendly Citrullus colocynthis-mediated silver nanoparticles (Cc-AgNPs). The antibacterial efficacy of Cc-AgNPs was evaluated against two multidrug-resistant pathogenic bacterial strains, Escherichia coli and Pseudomonas aeruginosa. The antiproliferative and antilipidemic performance of the prepared particles was determined against the MCF7 cell line, a breast cancer cell line. The in vitro antibacterial assay revealed that Cc-AgNPs induced dose-dependent bactericidal activity, as a considerable increase in the zone of inhibition (ZOI) was noted at higher concentrations. Reduced proliferation, migration, spheroid size, and colony formation exhibited the substantial antiproliferative potential of Cc-AgNPs against MCF7 cells. Significant alterations in the expression of cell surface markers, apoptosis, and cell proliferation genes further confirmed the antiproliferative impact of Cc-AgNPs. Moreover, Cc-AgNPs exhibited antilipidemic activity by reducing cellular cholesterol and triglyceride levels and regulating key genes involved in lipogenesis. In conclusion, these results propose that Cc-AgNPs can be employed as a potent tool for future antibacterial and anticancer applications |
---|---|
ISSN: | 2079-4991 2079-4991 |
DOI: | 10.3390/nano12213781 |