Herbal Fennel Essential Oil Nanogel: Formulation, Characterization and Antibacterial Activity against IStaphylococcus aureus/I
Antimicrobial resistance (AMR) is one of the greatest threats to humanity in the world. Antibiotic-resistant bacteria spread easily in communities and hospitals. Staphylococcus aureus (S. aureus) is a serious human infectious agent with threatening broad-spectrum resistance to many commonly used ant...
Gespeichert in:
Veröffentlicht in: | Gels 2022-11, Vol.8 (11) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Antimicrobial resistance (AMR) is one of the greatest threats to humanity in the world. Antibiotic-resistant bacteria spread easily in communities and hospitals. Staphylococcus aureus (S. aureus) is a serious human infectious agent with threatening broad-spectrum resistance to many commonly used antibiotics. To prevent the spread of pathogenic microorganisms, alternative strategies based on nature have been developed. Essential oils (EOs) are derived from numerous plant parts and have been described as antibacterial agents against S. aureus. Fennel essential oils were selected as antibacterial agents encapsulated in nanoparticles of polylactic acid and glycolic acid (PLGA). The optimum size of the formulation after loading with the active ingredient was 123.19 ± 6.1595 nm with a zeta potential of 0.051 ± 0.002 (23 ± 1.15 mV). The results of the encapsulation efficiency analysis showed high encapsulation of EOs, i.e., 66.4 ± 3.127. To obtain promising carrier materials for the delivery of fennel EOs, they were incorporated in the form of nanogels. The newly developed fennel oils in PLGANPs nanogels have good drug release and MIC against S. aureus. These results indicate the potential of this novel delivery system for antimicrobial therapy. |
---|---|
ISSN: | 2310-2861 2310-2861 |
DOI: | 10.3390/gels8110736 |