Stabilization of Antioxidant and Anti-Inflammatory Activities of Nano-Selenium Using IAnoectochilus burmannicus/I Extract as a Potential Novel Functional Ingredient
Anoectochilus burmannicus is an orchid that contains phenolic compounds and exhibits antioxidant and anti-inflammation properties. This study aimed to investigate whether its ethanolic extract (ABE) can be used as a reducing agent and/or a stabilizer of nano-selenium (SeNP) synthesis. SeNPs exhibite...
Gespeichert in:
Veröffentlicht in: | Nutrients 2023-02, Vol.15 (4) |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Anoectochilus burmannicus is an orchid that contains phenolic compounds and exhibits antioxidant and anti-inflammation properties. This study aimed to investigate whether its ethanolic extract (ABE) can be used as a reducing agent and/or a stabilizer of nano-selenium (SeNP) synthesis. SeNPs exhibited higher antioxidant activity than ABE-SeNPs. In contrast, ABE-SeNP (4 µM Se) had greater anti-inflammatory activity in LPS-induced macrophages than SeNPs. Interestingly, ABE acted as a stabilizer for SeNPs by preventing particle aggregation and preserving its antioxidant activity after long-term storage (90 days). Moreover, after the freeze-drying process, ABE-SeNPs could be completely reconstituted to suspension with significantly stable antioxidant and anti-inflammatory activities compared to freshly prepared particles, suggesting the cryoprotectant and/or lyoprotectant role of ABE. The present study shows the potential of ABE as an effective stabilizer for nanoparticles and provides evidence for the development of ABE-SeNPs as a food supplement or novel functional ingredient for health benefits. |
---|---|
ISSN: | 2072-6643 2072-6643 |
DOI: | 10.3390/nu15041018 |