IScytosiphon lomentaria/I Extract Ameliorates Obesity and Modulates Gut Microbiota in High-Fat-Diet-Fed Mice

Scytosiphon lomentaria (SL) is a brown seaweed with antioxidant and anti-inflammatory properties; however, its effects on obesity are unknown. In this research, we investigated the anti-obesity properties and underlying mechanisms of the SL extract in vitro and in vivo. In 3T3-L1 preadipocytes, SL e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nutrients 2023-02, Vol.15 (4)
Hauptverfasser: Yan, Jing, Bak, Jinwoo, Go, Yula, Park, Jumin, Park, Minkyoung, Lee, Hae-Jeung, Kim, Hyemee
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Scytosiphon lomentaria (SL) is a brown seaweed with antioxidant and anti-inflammatory properties; however, its effects on obesity are unknown. In this research, we investigated the anti-obesity properties and underlying mechanisms of the SL extract in vitro and in vivo. In 3T3-L1 preadipocytes, SL extract inhibited lipid accumulation, decreased the expression of Acc1, C/ebpa, Pparg mRNA and p-ACC1, and increased the expression of Ucp1 mRNA, UCP1 and p-AMPK. In animal experiments, mice were fed a chow diet, a high-fat diet (HF; 60% of calories as fat), and high-fat diet with SL extract (150 and 300 mg/kg body weight) for eight weeks (n = 10/group). SL extract reduced HF-induced weight gain, epididymal fat weight, fat cell size, LDL-C, leptin, fasting glucose, and glucose tolerance. In addition, SL extract had comparable effects on mRNA expression in WAT and liver to those observed in vitro, thereby inhibiting p-ACC1/ACC1 and increasing p-AMPK/AMPK and UCP1 expression. Furthermore, SL extract decreased HF-induced Firmicutes/Bacteroidetes ratio and reversed HF-reduced Bacteroides spp., Bacteroides vulgatus, and Faecalibacterium prausnitzii. These findings suggest that SL extract can aid in weight loss in mice fed a high-fat diet by altering adipogenic and thermogenic pathways, as well as gut microbiota composition.
ISSN:2072-6643
2072-6643
DOI:10.3390/nu15040815