Dark Fermentation of IArundo donax:/I Characterization of the Anaerobic Microbial Consortium

The dark fermentation of lignocellulose hydrolysates is a promising process for the production of hydrogen from renewable sources. Nevertheless, hydrogen yields are often lower than those obtained from other carbohydrate sources due to the presence of microbial growth inhibitors in lignocellulose hy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) 2023-02, Vol.16 (4)
Hauptverfasser: Toscano, Giuseppe, Zuccaro, Gaetano, Corsini, Anna, Zecchin, Sarah, Cavalca, Lucia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The dark fermentation of lignocellulose hydrolysates is a promising process for the production of hydrogen from renewable sources. Nevertheless, hydrogen yields are often lower than those obtained from other carbohydrate sources due to the presence of microbial growth inhibitors in lignocellulose hydrolysates. In this study, a microbial consortium for the production of hydrogen by dark fermentation has been obtained from a wild methanogenic sludge by means of thermal treatments. The consortium has been initially acclimated to a glucose-based medium and then used as inoculum for the fermentation of Arundo donax hydrolysates. Hydrogen yields obtained from fermentation of A. donax hydrolysates were lower than those obtained from glucose fermentation using the same inoculum (0.30 ± 0.05 versus 1.11 ± 0.06 mol of H[sub.2] per mol of glucose equivalents). The hydrogen-producing bacteria belonged mainly to the Enterobacteriaceae family in cultures growing on glucose and to Clostridium in those growing on A. donax hydrolysate. In the latter cultures, Lactobacillus outcompeted Enterobacteriaceae, although Clostridium also increased. Lactobacillus outgrowth could account for the lower yields observed in cultures growing on A. donax hydrolysate.
ISSN:1996-1073
1996-1073
DOI:10.3390/en16041813