IOscillatoria limnetica/I Mediated Green Synthesis of Iron Oxide Nanoparticles and Their Diverse In Vitro Bioactivities

Iron oxide nanoparticles (Fe[sub.2] O[sub.3] -NPs) were synthesized using Oscillatoria limnetica extract as strong reducing and capping agents. The synthesized iron oxide nanoparticles IONPs were characterized by UV-visible spectroscopy, Fourier transform infrared (FTIR), X-ray diffractive analysis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecules (Basel, Switzerland) Switzerland), 2023-02, Vol.28 (5)
Hauptverfasser: Haris, Muhammad, Fatima, Namra, Iqbal, Javed, Chalgham, Wadie, Mumtaz, Abdul Samad, El-Sheikh, Mohamed A, Tavafoghi, Maryam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Iron oxide nanoparticles (Fe[sub.2] O[sub.3] -NPs) were synthesized using Oscillatoria limnetica extract as strong reducing and capping agents. The synthesized iron oxide nanoparticles IONPs were characterized by UV-visible spectroscopy, Fourier transform infrared (FTIR), X-ray diffractive analysis (XRD), scanning electron microscope (SEM), and Energy dispersive X-ray spectroscopy (EDX). IONPs synthesis was confirmed by UV-visible spectroscopy by observing the peak at 471 nm. Furthermore, different in vitro biological assays, which showed important therapeutic potentials, were performed. Antimicrobial assay of biosynthesized IONPs was performed against four different Gram-positive and Gram-negative bacterial strains. E. coli was found to be the least suspected strain (MIC: 35 µg/mL), and B. subtilis was found to be the most suspected strain (MIC: 14 µg/mL). The maximum antifungal assay was observed for Aspergillus versicolor (MIC: 27 µg mL). The cytotoxic assay of IONPs was also studied using a brine shrimp cytotoxicity assay, and LD[sub.50] value was reported as 47 µg/mL. In toxicological evaluation, IONPs was found to be biologically compatible to human RBCs (IC[sub.50] : >200 µg/mL). The antioxidant assay, DPPH 2,2-diphenyl-1-picrylhydrazyly was recorded at 73% for IONPs. In conclusion, IONPs revealed great biological potential and can be further recommended for in vitro and in vivo therapeutic purposes.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules28052091