Transcriptome Analysis of IBacillus amyloliquefaciens/I Reveals Fructose Addition Effects on Fengycin Synthesis

Fengycin is a lipopeptide produced by Bacillus that has a strong inhibitory effect on filamentous fungi; however, its use is restricted due to poor production and low yield. Previous studies have shown that fengycin biosynthesis in B. amyloliquefaciens was found to be significantly increased after f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genes 2022-05, Vol.13 (6)
Hauptverfasser: Lu, Hedong, Xu, Hai, Yang, Panping, Bilal, Muhammad, Zhu, Shaohui, Zhong, Mengyuan, Zhao, Li, Gu, Chengyuan, Liu, Shuai, Zhao, Yuping, Geng, Chengxin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fengycin is a lipopeptide produced by Bacillus that has a strong inhibitory effect on filamentous fungi; however, its use is restricted due to poor production and low yield. Previous studies have shown that fengycin biosynthesis in B. amyloliquefaciens was found to be significantly increased after fructose addition. This study investigated the effect of fructose on fengycin production and its regulation mechanism in B. amyloliquefaciens by transcriptome sequencing. According to the RNA sequencing data, 458 genes were upregulated and 879 genes were downregulated. Transcriptome analysis results showed that fructose changed the transcription of amino acid synthesis, fatty acid metabolism, and energy metabolism; alterations in these metabolic pathways contribute to the synthesis of fengycin. In an MLF medium (modified Landy medium with fructose), the expression level of the fengycin operon was two-times higher than in an ML medium (modified Landy medium). After fructose was added to B. amyloliquefaciens, the fengycin-synthesis-associated genes were activated in the process of fengycin synthesis.
ISSN:2073-4425
2073-4425
DOI:10.3390/genes13060984