Subcortical and Cortical Electrophysiological Measures in Children with Speech-in-Noise Deficits Associated with Auditory Processing Disorders

Purpose: The aim of this study was to analyze the subcortical and cortical auditory evoked potentials for speech stimuli in children with speech-in-noise (SIN) deficits associated with auditory processing disorder (APD) without any reading or language deficits. Method: The study included 20 children...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of speech, language, and hearing research language, and hearing research, 2022-11, Vol.65 (11), p.4454-4468
Hauptverfasser: Hussain, Reesha Oovattil, Kumar, Prawin, Singh, Niraj Kumar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose: The aim of this study was to analyze the subcortical and cortical auditory evoked potentials for speech stimuli in children with speech-in-noise (SIN) deficits associated with auditory processing disorder (APD) without any reading or language deficits. Method: The study included 20 children in the age range of 9-13 years. Ten children were recruited to the APD group; they had below-normal scores on the speech-perception-in-noise test and were diagnosed as having APD. The remaining 10 were typically developing (TD) children and were recruited to the TD group. Speech-evoked subcortical (brainstem) and cortical (auditory late latency) responses were recorded and compared across both groups. Results: The results showed a statistically significant reduction in the amplitudes of the subcortical potentials (both for stimulus in quiet and in noise) and the magnitudes of the spectral components (fundamental frequency and the second formant) in children with SIN deficits in the APD group compared to the TD group. In addition, the APD group displayed enhanced amplitudes of the cortical potentials compared to the TD group. Conclusion: Children with SIN deficits associated with APD exhibited impaired coding/processing of the auditory information at the level of the brainstem and the auditory cortex.
ISSN:1092-4388
1558-9102
DOI:10.1044/2022_JSLHR-22-00094