COMPUTABLE REDUCIBILITY FOR COMPUTABLE LINEAR ORDERS OF TYPE [omega]

We study computable reducibility for computable isomorphic copies of the standard ordering of natural numbers. Following Andrews and Sorbi, we isolate the class of self-full degrees inside the induced degree structure [OMEGA]. We show that, over an arbitrary degree from [OMEGA], there exists an infi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2022-11, Vol.267 (4), p.429
Hauptverfasser: Askarbekkyzy, A, Bazhenov, N.A, Kalmurzayev, B.S
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study computable reducibility for computable isomorphic copies of the standard ordering of natural numbers. Following Andrews and Sorbi, we isolate the class of self-full degrees inside the induced degree structure [OMEGA]. We show that, over an arbitrary degree from [OMEGA], there exists an infinite antichain of self-full degrees. This fact implies that the poset [OMEGA] has continuum many automorphisms. We prove that any non-self-full degree from [OMEGA] has no minimal covers, which implies that, inside [OMEGA], the self-full degrees are precisely those elements that have a minimal cover. Bibliography: 18 titles.
ISSN:1072-3374
DOI:10.1007/s10958-022-06148-5