Integrating Pharmacological and Computational Approaches for the Phytochemical Analysis of ISyzygium cumini/I and Its Anti-Diabetic Potential

Diabetes mellitus (DM) is a metabolic disease caused by improper insulin secretion leading to hyperglycemia. Syzygium cumini has excellent therapeutic properties due to its high levels of phytochemicals. The current research aimed to evaluate the anti-diabetic potential of S. cumini plant’s seeds an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecules (Basel, Switzerland) Switzerland), 2022-09, Vol.27 (17)
Hauptverfasser: Rashid, Fatima, Javaid, Anam, Mahmood-ur-Rahman, Ashfaq, Usman Ali, Sufyan, Muhammad, Alshammari, Abdulrahman, Alharbi, Metab, Nisar, Muhammad Atif, Khurshid, Mohsin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Diabetes mellitus (DM) is a metabolic disease caused by improper insulin secretion leading to hyperglycemia. Syzygium cumini has excellent therapeutic properties due to its high levels of phytochemicals. The current research aimed to evaluate the anti-diabetic potential of S. cumini plant’s seeds and the top two phytochemicals (kaempferol and gallic acid) were selected for further analysis. These phytochemicals were selected via computational tools and evaluated for α-Glucosidase inhibitory activity via enzymatic assay. Gallic acid (IC[sub.50] 0.37 µM) and kaempferol (IC[sub.50] 0.87 µM) have shown a stronger α-glucosidase inhibitory capacity than acarbose (5.26 µM). In addition, these phytochemicals demonstrated the highest binding energy, hydrogen bonding, protein–ligand interaction and the best MD simulation results at 100 ns compared to acarbose. Furthermore, the ADMET properties of gallic acid and kaempferol also fulfilled the safety criteria. Thus, it was concluded that S. cumini could potentially be used to treat DM. The potential bioactive molecules identified in this study (kaempferol and gallic acid) may be used as lead drugs against diabetes.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules27175734