Variation of the uncentered maximal characteristic function
Let \mathrm{M} be the uncentered Hardy–Littlewood maximal operator, or the dyadic maximal operator, and let d\geq 1 . We prove that for a set E\subset\mathbb{R}^d of finite perimeter, the bound \operatorname{var}\mathrm{M} 1_E\leq C_d \operatorname{var} 1_E holds. We also prove this for the local ma...
Gespeichert in:
Veröffentlicht in: | Revista matemática iberoamericana 2022-05, Vol.38 (3), p.823-849 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let \mathrm{M} be the uncentered Hardy–Littlewood maximal operator, or the dyadic maximal operator, and let d\geq 1 . We prove that for a set E\subset\mathbb{R}^d of finite perimeter, the bound \operatorname{var}\mathrm{M} 1_E\leq C_d \operatorname{var} 1_E holds. We also prove this for the local maximal operator. |
---|---|
ISSN: | 0213-2230 2235-0616 |
DOI: | 10.4171/RMI/1312 |