Essentiality of CTNNB1 in Malignant Transformation of Human Embryonic Stem Cells under Long-Term Suboptimal Conditions

Human embryonic stem cells (hESCs) gradually accumulate abnormal karyotypes during long-term suboptimal culture, which hinder their application in regenerative medicine. Previous studies demonstrated that the activation of CTNNB1 might be implicated in this process. Hence, the hESC line with stably...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Stem cells international 2020-09, Vol.2020 (2020), p.1-14, Article 5823676
Hauptverfasser: Sun, Yi, Lin, Ge, Hu, Liang, Ouyang, Qi, Yu, Juan, Wang, Yang, Zeng, Sicong, Liu, Jie, Zhou, Di
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Human embryonic stem cells (hESCs) gradually accumulate abnormal karyotypes during long-term suboptimal culture, which hinder their application in regenerative medicine. Previous studies demonstrated that the activation of CTNNB1 might be implicated in this process. Hence, the hESC line with stably silenced CTNNB1 was established to further explore the role of CTNNB1 in the malignant transformation of hESCs. It was shown to play a vital role in the maintenance of the physiological properties of stem cells, such as proliferation, migration, differentiation, and telomere regulation. Furthermore, the malignant transformation of hESCs was induced by continuous exposure to 0.001 μg/ml mitomycin C (MMC). The results showed that CTNNB1 and its target genes, including proto-oncogenes CCND1 and C-MYC, were aberrantly upregulated in hESCs after MMC treatment. Moreover, the high expression of CTNNB1 accelerated cell transition from G0/G1 phase to the S phase and stimulated the growth of cells containing breakage-fusion-bridge (BFB) cycles. Conversely, CTNNB1 silencing inhibited these effects and triggered a survival crisis. The current data indicated that CTNNB1 is intimately associated with the physiological properties of stem cells; however, the aberrant expression of CTNNB1 is involved in the malignant transformation of hESCs, which might advance the process by facilitating telomere-related unstable cell proliferation. Thus, the aberrant CTNNB1 level might serve as a potential biomarker for detecting the malignant transformation of hESCs.
ISSN:1687-966X
1687-9678
1687-9678
DOI:10.1155/2020/5823676