Nash blowups in prime characteristic

We initiate the study of Nash blowups in prime characteristic. First, we show that a normal variety is non-singular if and only if its Nash blowup is an isomorphism, extending a theorem by A. Nobile. We also study higher Nash blowups, as defined by T. Yasuda. Specifically, we give a characteristic-f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista matemática iberoamericana 2022-01, Vol.38 (1), p.257-267
Hauptverfasser: Duarte, Daniel, Nunez-Betancourt, Luis
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We initiate the study of Nash blowups in prime characteristic. First, we show that a normal variety is non-singular if and only if its Nash blowup is an isomorphism, extending a theorem by A. Nobile. We also study higher Nash blowups, as defined by T. Yasuda. Specifically, we give a characteristic-free proof of a higher version of Nobile’s theorem for quotient varieties and hypersurfaces. We also prove a weaker version for F -pure varieties.
ISSN:0213-2230
2235-0616
DOI:10.4171/RMI/1278