Nash blowups in prime characteristic
We initiate the study of Nash blowups in prime characteristic. First, we show that a normal variety is non-singular if and only if its Nash blowup is an isomorphism, extending a theorem by A. Nobile. We also study higher Nash blowups, as defined by T. Yasuda. Specifically, we give a characteristic-f...
Gespeichert in:
Veröffentlicht in: | Revista matemática iberoamericana 2022-01, Vol.38 (1), p.257-267 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We initiate the study of Nash blowups in prime characteristic. First, we show that a normal variety is non-singular if and only if its Nash blowup is an isomorphism, extending a theorem by A. Nobile. We also study higher Nash blowups, as defined by T. Yasuda. Specifically, we give a characteristic-free proof of a higher version of Nobile’s theorem for quotient varieties and hypersurfaces. We also prove a weaker version for
F
-pure varieties. |
---|---|
ISSN: | 0213-2230 2235-0616 |
DOI: | 10.4171/RMI/1278 |