Error bounds for the numerical evaluation of Legendre polynomials by a three-term recurrence

We study the numerical evaluation of the Legendre polynomials [P.sub.n] on the interval [-1, 1] via a three-term recurrence. We prove that in a neighborhood of an endpoint, the computed approximation exactly agrees with the line tangent to [P.sub.n] at this endpoint. As a consequence, we obtain shar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronic transactions on numerical analysis 2021-01, Vol.54, p.323-332
Hauptverfasser: Hrycak, Tomasz, Schmutzhard, Sebastian
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the numerical evaluation of the Legendre polynomials [P.sub.n] on the interval [-1, 1] via a three-term recurrence. We prove that in a neighborhood of an endpoint, the computed approximation exactly agrees with the line tangent to [P.sub.n] at this endpoint. As a consequence, we obtain sharp error bounds for the recurrence. Key words. Legendre polynomials, three-term recurrence, floating-point arithmetic AMS subject classifications. 65D20, 65Q30, 33F05
ISSN:1068-9613
1097-4067
DOI:10.1553/etna_vol54s323