RCS CALCULATION USING HYBRID FDTD-NARX TECHNIQUE

This paper amalgamates two uncorrelated techniques namely finite difference time domain technique (FDTD) and nonlinear autoregressive with exogenous input (NARX) neural network to achieve a faster computation of radar cross section (RCS). It generates only a limited number of FDTD data and uses them...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Progress in electromagnetics research M Pier M 2019-01, Vol.82, p.73-84
Hauptverfasser: Sahoo, Nihar K, Panda, Dhruba C, Mishra, Rabindra K, Sahu, Amit K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper amalgamates two uncorrelated techniques namely finite difference time domain technique (FDTD) and nonlinear autoregressive with exogenous input (NARX) neural network to achieve a faster computation of radar cross section (RCS). It generates only a limited number of FDTD data and uses them to train a NARX neural network. The data beyond this limited number for the FDTD come from the NARX prediction. Comparison of the performance of FDTD-NARX hybrid with other methods indicates good matching with better timing for RCS of electrically larger objects.
ISSN:1937-8726
1937-8726
DOI:10.2528/PIERM19041007