AN IMPROVED CALCULATION METHOD FOR STATIC CAPACITANCE IN INDUCTOR WINDINGS

This paper proposes an improved method for calculating static capacitance between two conductors with circular cross-sections in inductor windings. It considers the effects of electric field coupling and energy distribution on static capacitance. In this paper, the capacitance between two conductors...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Progress in electromagnetics research C Pier C 2020-07, Vol.104, p.25-36
Hauptverfasser: Du, Mingxing, Zhang, Yuxiao, Wang, Hongbin, Tian, Ye, Ouyang, Ziwei, Wei, Kexin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes an improved method for calculating static capacitance between two conductors with circular cross-sections in inductor windings. It considers the effects of electric field coupling and energy distribution on static capacitance. In this paper, the capacitance between two conductors in inductor windings is calculated by the improved calculation method and finite-element method (FEM), respectively. The relative error of the improved calculation method is between 0.11% and 4.51% compared to the FEM. In order to verify the effectiveness of this method for inductor winding, the orthogonal stacking winding and staggered stacking winding are chosen as calculation examples to accurately predict the static capacitance of multi-layer circular-section induction coils. Finite element models for the two types of windings are built to determine the capacitances for our 3 x 3 array arrangement winding. The results show that the improved calculation method proposed in this paper highly conforms to FEM. Finally, we adopt an air-cored cylindrical inductor winding for experimental verification, and the improved calculation method is proved to be correct.
ISSN:1937-8718
1937-8718
DOI:10.2528/pierc20051203