Highly oxygenated organic molecules produced by the oxidation of benzene and toluene in a wide range of OH exposure and NO.sub.x conditions

Oxidation of aromatic volatile organic compounds (VOCs) leads to the formation of tropospheric ozone and secondary organic aerosol, for which gaseous oxygenated products are important intermediates. We show, herein, the experimental results of highly oxygenated organic molecules (HOMs) produced by t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Atmospheric chemistry and physics 2021-08, Vol.21 (15)
Hauptverfasser: Cheng, Xi, Chen, Qi, Jie Li, Yong, Zheng, Yan, Liao, Keren, Huang, Guancong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Oxidation of aromatic volatile organic compounds (VOCs) leads to the formation of tropospheric ozone and secondary organic aerosol, for which gaseous oxygenated products are important intermediates. We show, herein, the experimental results of highly oxygenated organic molecules (HOMs) produced by the oxidation of benzene and toluene in a wide range of OH exposure and NO.sub.x conditions. The results suggest that multigeneration OH oxidation plays an important role in the product distribution, which likely proceeds more preferably via H subtraction than OH addition for early generation products from light aromatics. More oxygenated products present in our study than in previous flow tube studies, highlighting the impact of experimental conditions on product distributions. The formation of dimeric products, however, was suppressed and might be unfavorable under conditions of high OH exposure and low NO.sub.x in toluene oxidation. Under high-NO.sub.x conditions, nitrogen-containing multifunctional products are formed, while the formation of other HOMs is suppressed. Products containing two nitrogen atoms become more important as the NO.sub.x level increases, and the concentrations of these compounds depend significantly on NO.sub.2 . The highly oxygenated nitrogen-containing products might be peroxyacyl nitrates, implying a prolonged effective lifetime of RO.sub.2 that facilitates regional pollution. Our results call for further investigation on the roles of high-NO.sub.2 conditions in the oxidation of aromatic VOCs.
ISSN:1680-7316
1680-7324