Optimal heat distributions by a gradient-based shape optimization method
In this paper, we consider the problem of locating coated inclusions in a 2D dimensional conductor material in order to obtain a suitable thermal environment. The mathematical model is described by elliptic partial differential equation with linear boundary condition, including heat transfer coeffic...
Gespeichert in:
Veröffentlicht in: | Control and cybernetics 2018-01, Vol.47 (1), p.33 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we consider the problem of locating coated inclusions in a 2D dimensional conductor material in order to obtain a suitable thermal environment. The mathematical model is described by elliptic partial differential equation with linear boundary condition, including heat transfer coefficient. A shape optimization problem is formulated by introducing a cost functional to solve the problem under consideration. The shape sensitivity analysis is rigorously performed for the problem by means of a Lagrangian formulation. The optimization problem is solved by means of gradient-based strategy and numerical experiments are carried out to demonstrate the feasibility of the approach. |
---|---|
ISSN: | 0324-8569 |