A degron-based strategy reveals new insights into Aurora B function in C. elegans

The widely conserved kinase Aurora B regulates important events during cell division. Surprisingly, recent work has uncovered a few functions of Aurora-family kinases that do not require kinase activity. Thus, understanding this important class of cell cycle regulators will require strategies to dis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS genetics 2021-05, Vol.17 (5), p.e1009567-e1009567, Article 1009567
Hauptverfasser: Divekar, Nikita S., Davis-Roca, Amanda C., Zhang, Liangyu, Dernburg, Abby F., Wignall, Sarah M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The widely conserved kinase Aurora B regulates important events during cell division. Surprisingly, recent work has uncovered a few functions of Aurora-family kinases that do not require kinase activity. Thus, understanding this important class of cell cycle regulators will require strategies to distinguish kinase-dependent from independent functions. Here, we address this need in C. elegans by combining germline-specific, auxin-induced Aurora B (AIR-2) degradation with the transgenic expression of kinase-inactive AIR-2. Through this approach, we find that kinase activity is essential for AIR-2's major meiotic functions and also for mitotic chromosome segregation. Moreover, our analysis revealed insight into the assembly of the ring complex (RC), a structure that is essential for chromosome congression in C. elegans oocytes. AIR-2 localizes to chromosomes and recruits other components to form the RC. However, we found that while kinase-dead AIR-2 could load onto chromosomes, other components were not recruited. This failure in RC assembly appeared to be due to a loss of RC SUMOylation, suggesting that there is crosstalk between SUMOylation and phosphorylation in building the RC and implicating AIR-2 in regulating the SUMO pathway in oocytes. Similar conditional depletion approaches may reveal new insights into other cell cycle regulators. Author summary During cell division, chromosomes must be accurately partitioned to ensure the proper distribution of genetic material. In mitosis, chromosomes are duplicated once and then divided once, generating daughter cells with the same amount of genetic material as the original cell. Conversely, during meiosis chromosomes are duplicated once and divided twice, to cut the chromosome number in half to generate eggs and sperm. One important protein that is required for both mitotic and meiotic chromosome segregation is the kinase Aurora B, which phosphorylates a variety of other cell division proteins. However, previous research has shown that some kinases have functions that are independent of their ability to phosphorylate other proteins. Thus, fully understanding how Aurora B regulates cell division requires methods to test whether its various functions require kinase activity. We designed and implemented such a strategy in the model organism C. elegans, by depleting Aurora B from meiotically and mitotically-dividing cells, leaving in place a kinase-inactive version. This work has lent insight into how Aurora B regu
ISSN:1553-7404
1553-7390
1553-7404
DOI:10.1371/journal.pgen.1009567