Low-level variant calling for non-matched samples using a position-based and nucleotide-specific approach

Background The widespread use of next-generation sequencing has identified an important role for somatic mosaicism in many diseases. However, detecting low-level mosaic variants from next-generation sequencing data remains challenging. Results Here, we present a method for Position-Based Variant Ide...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC bioinformatics 2021-04, Vol.22 (1), p.181-181, Article 181
Hauptverfasser: Dudley, Jeffrey N., Hong, Celine S., Hawari, Marwan A., Shwetar, Jasmine, Sapp, Julie C., Lack, Justin, Shiferaw, Henoke, Johnston, Jennifer J., Biesecker, Leslie G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background The widespread use of next-generation sequencing has identified an important role for somatic mosaicism in many diseases. However, detecting low-level mosaic variants from next-generation sequencing data remains challenging. Results Here, we present a method for Position-Based Variant Identification (PBVI) that uses empirically-derived distributions of alternate nucleotides from a control dataset. We modeled this approach on 11 segmental overgrowth genes. We show that this method improves detection of single nucleotide mosaic variants of 0.01-0.05 variant allele fraction compared to other low-level variant callers. At depths of 600 x and 1200 x, we observed > 85% and > 95% sensitivity, respectively. In a cohort of 26 individuals with somatic overgrowth disorders PBVI showed improved signal to noise, identifying pathogenic variants in 17 individuals. Conclusion PBVI can facilitate identification of low-level mosaic variants thus increasing the utility of next-generation sequencing data for research and diagnostic purposes.
ISSN:1471-2105
1471-2105
DOI:10.1186/s12859-021-04090-y