Low-level variant calling for non-matched samples using a position-based and nucleotide-specific approach
Background The widespread use of next-generation sequencing has identified an important role for somatic mosaicism in many diseases. However, detecting low-level mosaic variants from next-generation sequencing data remains challenging. Results Here, we present a method for Position-Based Variant Ide...
Gespeichert in:
Veröffentlicht in: | BMC bioinformatics 2021-04, Vol.22 (1), p.181-181, Article 181 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background The widespread use of next-generation sequencing has identified an important role for somatic mosaicism in many diseases. However, detecting low-level mosaic variants from next-generation sequencing data remains challenging. Results Here, we present a method for Position-Based Variant Identification (PBVI) that uses empirically-derived distributions of alternate nucleotides from a control dataset. We modeled this approach on 11 segmental overgrowth genes. We show that this method improves detection of single nucleotide mosaic variants of 0.01-0.05 variant allele fraction compared to other low-level variant callers. At depths of 600 x and 1200 x, we observed > 85% and > 95% sensitivity, respectively. In a cohort of 26 individuals with somatic overgrowth disorders PBVI showed improved signal to noise, identifying pathogenic variants in 17 individuals. Conclusion PBVI can facilitate identification of low-level mosaic variants thus increasing the utility of next-generation sequencing data for research and diagnostic purposes. |
---|---|
ISSN: | 1471-2105 1471-2105 |
DOI: | 10.1186/s12859-021-04090-y |