Thymosin [beta]4 dynamics during chicken enteroid development
The sheared avian intestinal villus-crypts exhibit high tendency to self-repair and develop enteroids in culture. Presuming that this transition process involves differential biomolecular changes, we employed matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS)...
Gespeichert in:
Veröffentlicht in: | Molecular and cellular biochemistry 2020-12, Vol.476 (2), p.1303 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The sheared avian intestinal villus-crypts exhibit high tendency to self-repair and develop enteroids in culture. Presuming that this transition process involves differential biomolecular changes, we employed matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS) to find whether there were differences in the spectral profiles of sheared villi versus the enteroids, assessed in the mass range of 2-18 kDa. The results showed substantial differences in the intensities of the spectral peaks, one particularly corresponding to the mass of 4963 Da, which was significantly low in the sheared villus-crypts compared with the enteroids. Based on our previous results with other avian tissues and further molecular characterization by LC-ESI-IT-TOF-MS, and multiple reaction monitoring (MRM), the peak was identified to be thymosin [beta]4 (T[beta]4), a ubiquitously occurring regulatory peptide implicated in wound healing process. The identity of the peptide was further confirmed by immunohistochemistry which showed it to be present in a very low levels in the sheared villi but replete in the enteroids. Since T[beta]4 sequesters G-actin preventing its polymerization to F-actin, we compared the changes in F-actin by its immunohistochemical localization that showed no significant differences between the sheared villi and enteroids. We propose that depletion of T[beta]4 likely precedes villous reparation process. The possible mechanism for the differences in T[beta]4 profile in relation to the healing of the villus-crypts to developing enteroids is discussed. |
---|---|
ISSN: | 0300-8177 |
DOI: | 10.1007/s11010-020-04008-x |