Extension criteria for homogeneous Sobolev spaces of functions of one variable
For each $p > 1$ and each positive integer $m$, we give intrinsic characterizations of the restriction of the homogeneous Sobolev space $L_{p}^{m}(\mathbb{R})$ to an arbitrary closed subset $E$ of the real line. We show that the classical one-dimensional Whitney extension operator is "univer...
Gespeichert in:
Veröffentlicht in: | Revista matemática iberoamericana 2021-01, Vol.37 (1), p.361-414 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng ; spa |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For each $p > 1$ and each positive integer $m$, we give intrinsic characterizations of the restriction of the homogeneous Sobolev space $L_{p}^{m}(\mathbb{R})$ to an arbitrary closed subset $E$ of the real line. We show that the classical one-dimensional Whitney extension operator is "universal" for the scale of $L_{p}^{m}(\mathbb{R})$ spaces in the following sense: For every $p\in(1,\infty]$, it provides almost optimal $L^m_p$-extensions of functions defined on $E$. The operator norm of this extension operator is bounded by a constant depending only on $m$. This enables us to prove several constructive $L^m_p$-extension criteria expressed in terms of $m$-th order divided differences of functions. |
---|---|
ISSN: | 0213-2230 2235-0616 |
DOI: | 10.4171/rmi/1210 |