Extension criteria for homogeneous Sobolev spaces of functions of one variable

For each $p > 1$ and each positive integer $m$, we give intrinsic characterizations of the restriction of the homogeneous Sobolev space $L_{p}^{m}(\mathbb{R})$ to an arbitrary closed subset $E$ of the real line. We show that the classical one-dimensional Whitney extension operator is "univer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista matemática iberoamericana 2021-01, Vol.37 (1), p.361-414
1. Verfasser: Shvartsman, Pavel
Format: Artikel
Sprache:eng ; spa
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For each $p > 1$ and each positive integer $m$, we give intrinsic characterizations of the restriction of the homogeneous Sobolev space $L_{p}^{m}(\mathbb{R})$ to an arbitrary closed subset $E$ of the real line. We show that the classical one-dimensional Whitney extension operator is "universal" for the scale of $L_{p}^{m}(\mathbb{R})$ spaces in the following sense: For every $p\in(1,\infty]$, it provides almost optimal $L^m_p$-extensions of functions defined on $E$. The operator norm of this extension operator is bounded by a constant depending only on $m$. This enables us to prove several constructive $L^m_p$-extension criteria expressed in terms of $m$-th order divided differences of functions.
ISSN:0213-2230
2235-0616
DOI:10.4171/rmi/1210