A framework of Mult! Linear Regression based on Fuzzy Theory and Situation Awareness and its application to Beach Risk Assessment

Beaches have many risk factors that cause various accidents, such as drifting and drowning, these accidents have many risk factors. To analyze them, in this paper, we identify beach risk factors, and define the criteria and correlation for each risk factor. Then, we generate new risk factors based o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:KSII transactions on Internet and information systems 2020-07, Vol.14 (7), p.3039
Hauptverfasser: Shin, Gun-Yoon, Hong, Sung-Sam, Kim, Dong-Wook, Hwang, Cheol-Hun, Han, Myung-Mook, Kim, Hwayoung, Kim, Young jae
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Beaches have many risk factors that cause various accidents, such as drifting and drowning, these accidents have many risk factors. To analyze them, in this paper, we identify beach risk factors, and define the criteria and correlation for each risk factor. Then, we generate new risk factors based on Fuzzy theory, and define Situation Awareness for each time. Finally, we propose a beach risk assessment and prediction model based on linear regression using the calculated risk result and pre-defined risk factors. We use national public data of the Korea Meteorological Administration (KMA), and the Korea Hydrographic and Oceanographic Agency (KHOA). The results of the experiment showed the prediction accuracy of beach risk to be 0.90%, and the prediction accuracy of drifting and drowning accidents to be 0.89% and 0.86%, respectively. Also, through factor correlation analysis and risk factor assessment, the influence of each of the factors on beach risk can be confirmed. In conclusion, we confirmed that our proposed model can assess and predict beach risks. Keywords: Beach Risk Assessment, Beach Risk Factor, Situation Awareness, Fuzzy Theory, Multi Linear Regression.
ISSN:1976-7277
1976-7277
DOI:10.3837/tiis.2020.07.017