Mercury oxidation coupled to autotrophic denitrifying branched sulfur oxidation and sulfur disproportionation for simultaneous removal of Hg.sup.0 and NO

Coupling elemental mercury (Hg.sup.0) oxidation, autotrophic denitrifying sulfur oxidation, and sulfur disproportionation offers technological potential for simultaneous Hg.sup.0 and nitric oxide (NO) removal. This study shed light on simultaneous demercuration and denitration of flue gas by a sulfu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied microbiology and biotechnology 2020-10, Vol.104 (19), p.8489
Hauptverfasser: Huang, Zhenshan, Tan, X. Q, Wei, Z. S, Jiao, H. Y, Xiao, X. L, Ming, S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Coupling elemental mercury (Hg.sup.0) oxidation, autotrophic denitrifying sulfur oxidation, and sulfur disproportionation offers technological potential for simultaneous Hg.sup.0 and nitric oxide (NO) removal. This study shed light on simultaneous demercuration and denitration of flue gas by a sulfur-oxidizing membrane biofilm reactor (MBfR). Removal efficiency of Hg.sup.0 and NO attained 92% and 83%, respectively in long-term operation. Taxonomic and metagenomic study revealed that a tremendous variety of Hg.sup.0-oxidizing bacteria (MOB) (Thiobacillus, Truepera, etc.), denitrifying/sulfur-oxidizing bacteria (DSOB) (Thioalkalivibrio, Thauera, etc.), sulfur-disproportionating bacteria (SDB) (Desulfobulbus, Desulfomicrobium, etc.), and multi-functional bacteria (Halothiobacillus, Thiobacillus, etc.) significantly increased in abundance during growth under feeding of Hg.sup.0 and NO in simulated flue gas. The comprehensive employment of sequential chemical extraction processes, inductive coupled mass spectrometry, X-ray diffraction, X-ray photoelectron spectroscopy, and scanning electron microscopy coupled to energy disperse spectroscopy confirmed that Hg.sup.0 was finally biologically oxidized to crystallized metacinnabar ([beta]-HgS) extracellular micromolecular particles. Our findings provided mechanistic insights that MOB, DSOB, and multi-functional bacteria synergistically bio-oxidized Hg.sup.0 as the initial electron donor to Hg.sup.2+ and denitrified NO as the terminal electron acceptor to N.sub.2. SDB disproportionated S.sup.0 branched from S.sub.2O.sub.3.sup.2- into S.sup.2- and SO.sub.4.sup.2-, and [beta]-HgS formation from Hg.sup.2+ and disproportionation-derived S.sup.2-, thermodynamically favored Hg.sup.0 bio-oxidation. This novel biotechnique can be a cost-effective and environmentally friendly alternative to flue gas Hg.sup.0 and NO treatment.
ISSN:0175-7598
1432-0614
DOI:10.1007/s00253-020-10827-1