Long-time behaviour of solutions to a singular heat equation with an application to hydrodynamics

In this paper, we extend the results of [8] by proving exponential asymptotic $H^1$-convergence of solutions to a one-dimensional singular heat equation with $L^2$-source term that describe evolution of viscous thin liquid sheets while considered in the Lagrange coordinates. Furthermore, we extend t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Interfaces and free boundaries 2020-01, Vol.22 (2), p.157-174
Hauptverfasser: Kitavtsev, Georgy, Taranets, Roman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we extend the results of [8] by proving exponential asymptotic $H^1$-convergence of solutions to a one-dimensional singular heat equation with $L^2$-source term that describe evolution of viscous thin liquid sheets while considered in the Lagrange coordinates. Furthermore, we extend this asymptotic convergence result to the case of a time inhomogeneous source. This study has also independent interest for the porous medium equation theory.
ISSN:1463-9963
1463-9971
DOI:10.4171/IFB/437