Recirculating aquaculture system with three phase fluidized bed reactor: Carbon and nitrogen removal/Sistema de recirculacion acuicola con reactor de lecho fluidizado trifasico: Remocion de carbono y nitrogeno

The core objective of the study was to evaluate the organic matter and nitrogen removal efficiency in a recirculating aquaculture system for the intensive laboratory-bred rainbow trout. The treatment system consisted of an upflow reactor (UR), a pre-filtration unit, a three-phase airlift fluidized b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista Facultad de Ingeniería 2020-10 (97), p.93
Hauptverfasser: Cardenas-Calvachi, Gloria Lucia, Sanchez-Ortiz, Ivan Andres
Format: Artikel
Sprache:eng ; spa
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The core objective of the study was to evaluate the organic matter and nitrogen removal efficiency in a recirculating aquaculture system for the intensive laboratory-bred rainbow trout. The treatment system consisted of an upflow reactor (UR), a pre-filtration unit, a three-phase airlift fluidized bed reactor (AFBR), a granular unit for the UR and the AFBR effluents filtration, and an ultraviolet (UV) unit for the final effluent disinfection. A plastic material was used as support media in the UR, and granular zeolite with an effective size of 1.30 mm in an 80 g/L constant concentration was used as a carrier for the AFBR. Average removal efficiencies of biochemical oxygen demand (BOD) chemical oxygen demand (COD), ammonium, nitrite, nitrate, and total nitrogen were 94.4, 91.7, 52.5, 13.4, 1.3 and 6.0% respectively. In the rainbow trout rearing tanks, there was a water volume of 125 L and water exchange rates of 125 and 250 L/h, there were no registered mortalities; the calculated daily weight gains were 1.55 and 1.51 g/day and the final stocking densities were respectively 20.87 and 20.58 kg/[m.sup.3]. The results suggested that the system had the capability to develop a nitrification process for maintaining water quality characteristics within the recommended values for rainbow trout farming, but total nitrogen was not effectively removed due to the weak denitrification process, since there were modest values of nitrite and overall nitrogen removal.
ISSN:0120-6230
DOI:10.17533/udea.redin.20200264