Putative cell type discovery from single-cell gene expression data

We present the Single-Cell Clustering Assessment Framework, a method for the automated identification of putative cell types from single-cell RNA sequencing (scRNA-seq) data. By iteratively applying a machine learning approach to a given set of cells, we simultaneously identify distinct cell groups...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature methods 2020-06, Vol.17 (6), p.621-628
Hauptverfasser: Miao, Zhichao, Moreno, Pablo, Huang, Ni, Papatheodorou, Irene, Brazma, Alvis, Teichmann, Sarah A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 628
container_issue 6
container_start_page 621
container_title Nature methods
container_volume 17
creator Miao, Zhichao
Moreno, Pablo
Huang, Ni
Papatheodorou, Irene
Brazma, Alvis
Teichmann, Sarah A.
description We present the Single-Cell Clustering Assessment Framework, a method for the automated identification of putative cell types from single-cell RNA sequencing (scRNA-seq) data. By iteratively applying a machine learning approach to a given set of cells, we simultaneously identify distinct cell groups and a weighted list of feature genes for each group. The differentially expressed feature genes discriminate the given cell group from other cells. Each such group of cells corresponds to a putative cell type or state, characterized by the feature genes as markers. Benchmarking using expert-annotated scRNA-seq datasets shows that our method automatically identifies the ‘ground truth’ cell assignments with high accuracy. SCCAF automates the discovery of putative cell types and their feature genes using scRNA-seq data.
doi_str_mv 10.1038/s41592-020-0825-9
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_gale_infotracmisc_A625811119</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A625811119</galeid><sourcerecordid>A625811119</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-d40edb62ac3a72267e79667cac7b5b7161603a6e0924aa628e7c3afdbcb2dccd3</originalsourceid><addsrcrecordid>eNp1kUtLxTAQhYMovn-AGym4cVOdpGnSLvXiCwRd6DqkyfRSaZtr0or335t6faBoZpEh853hhEPIAYUTCllxGjjNS5YCgxQKlqflGtmmOS9SSSFf_-yhpFtkJ4QngCzjLN8kWxnjsSRsk_P7cdBD84KJwbZNhuUCE9sE417QL5Pauy4JTT9vMX2fz7HHBF8XHkNoXJ9YPeg9slHrNuD-x71LHi8vHmbX6e3d1c3s7DY1PCuH1HJAWwmmTaYlY0KiLIWQRhtZ5ZWkggrItEAoGddasAJlJGtbmYpZY2y2S45XexfePY8YBtVFo9GV7tGNQTEOXHDIC4jo0S_0yY2-j-4mqhRQCBDf1Fy3qJq-doPXZlqqzgTLCxpPGamTP6hYFrvGuB7rJr7_ENCVwHgXgsdaLXzTab9UFNSUm1rlpmJuaspNTZrDD8Nj1aH9UnwGFQG2AkIc9XP03z_6f-sbrrugrQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2409608606</pqid></control><display><type>article</type><title>Putative cell type discovery from single-cell gene expression data</title><source>MEDLINE</source><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Miao, Zhichao ; Moreno, Pablo ; Huang, Ni ; Papatheodorou, Irene ; Brazma, Alvis ; Teichmann, Sarah A.</creator><creatorcontrib>Miao, Zhichao ; Moreno, Pablo ; Huang, Ni ; Papatheodorou, Irene ; Brazma, Alvis ; Teichmann, Sarah A.</creatorcontrib><description>We present the Single-Cell Clustering Assessment Framework, a method for the automated identification of putative cell types from single-cell RNA sequencing (scRNA-seq) data. By iteratively applying a machine learning approach to a given set of cells, we simultaneously identify distinct cell groups and a weighted list of feature genes for each group. The differentially expressed feature genes discriminate the given cell group from other cells. Each such group of cells corresponds to a putative cell type or state, characterized by the feature genes as markers. Benchmarking using expert-annotated scRNA-seq datasets shows that our method automatically identifies the ‘ground truth’ cell assignments with high accuracy. SCCAF automates the discovery of putative cell types and their feature genes using scRNA-seq data.</description><identifier>ISSN: 1548-7091</identifier><identifier>EISSN: 1548-7105</identifier><identifier>DOI: 10.1038/s41592-020-0825-9</identifier><identifier>PMID: 32424270</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/114 ; 631/114/2397 ; 631/114/2404 ; 631/114/794 ; 631/208/199 ; Animals ; Automation ; Bioinformatics ; Biological Microscopy ; Biological Techniques ; Biomedical and Life Sciences ; Biomedical Engineering/Biotechnology ; Cluster Analysis ; Clustering ; Datasets as Topic ; Gene Expression ; Gene sequencing ; Genes ; Genetic research ; Ground truth ; Humans ; Learning algorithms ; Life Sciences ; Machine Learning ; Proteomics ; Reproducibility of Results ; Ribonucleic acid ; RNA ; RNA sequencing ; RNA-Seq - methods ; Single-Cell Analysis - methods ; Software</subject><ispartof>Nature methods, 2020-06, Vol.17 (6), p.621-628</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2020</rights><rights>COPYRIGHT 2020 Nature Publishing Group</rights><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-d40edb62ac3a72267e79667cac7b5b7161603a6e0924aa628e7c3afdbcb2dccd3</citedby><cites>FETCH-LOGICAL-c439t-d40edb62ac3a72267e79667cac7b5b7161603a6e0924aa628e7c3afdbcb2dccd3</cites><orcidid>0000-0001-5988-7409 ; 0000-0002-6294-6366 ; 0000-0002-5777-9815</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41592-020-0825-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41592-020-0825-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32424270$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Miao, Zhichao</creatorcontrib><creatorcontrib>Moreno, Pablo</creatorcontrib><creatorcontrib>Huang, Ni</creatorcontrib><creatorcontrib>Papatheodorou, Irene</creatorcontrib><creatorcontrib>Brazma, Alvis</creatorcontrib><creatorcontrib>Teichmann, Sarah A.</creatorcontrib><title>Putative cell type discovery from single-cell gene expression data</title><title>Nature methods</title><addtitle>Nat Methods</addtitle><addtitle>Nat Methods</addtitle><description>We present the Single-Cell Clustering Assessment Framework, a method for the automated identification of putative cell types from single-cell RNA sequencing (scRNA-seq) data. By iteratively applying a machine learning approach to a given set of cells, we simultaneously identify distinct cell groups and a weighted list of feature genes for each group. The differentially expressed feature genes discriminate the given cell group from other cells. Each such group of cells corresponds to a putative cell type or state, characterized by the feature genes as markers. Benchmarking using expert-annotated scRNA-seq datasets shows that our method automatically identifies the ‘ground truth’ cell assignments with high accuracy. SCCAF automates the discovery of putative cell types and their feature genes using scRNA-seq data.</description><subject>631/114</subject><subject>631/114/2397</subject><subject>631/114/2404</subject><subject>631/114/794</subject><subject>631/208/199</subject><subject>Animals</subject><subject>Automation</subject><subject>Bioinformatics</subject><subject>Biological Microscopy</subject><subject>Biological Techniques</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Cluster Analysis</subject><subject>Clustering</subject><subject>Datasets as Topic</subject><subject>Gene Expression</subject><subject>Gene sequencing</subject><subject>Genes</subject><subject>Genetic research</subject><subject>Ground truth</subject><subject>Humans</subject><subject>Learning algorithms</subject><subject>Life Sciences</subject><subject>Machine Learning</subject><subject>Proteomics</subject><subject>Reproducibility of Results</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA sequencing</subject><subject>RNA-Seq - methods</subject><subject>Single-Cell Analysis - methods</subject><subject>Software</subject><issn>1548-7091</issn><issn>1548-7105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kUtLxTAQhYMovn-AGym4cVOdpGnSLvXiCwRd6DqkyfRSaZtr0or335t6faBoZpEh853hhEPIAYUTCllxGjjNS5YCgxQKlqflGtmmOS9SSSFf_-yhpFtkJ4QngCzjLN8kWxnjsSRsk_P7cdBD84KJwbZNhuUCE9sE417QL5Pauy4JTT9vMX2fz7HHBF8XHkNoXJ9YPeg9slHrNuD-x71LHi8vHmbX6e3d1c3s7DY1PCuH1HJAWwmmTaYlY0KiLIWQRhtZ5ZWkggrItEAoGddasAJlJGtbmYpZY2y2S45XexfePY8YBtVFo9GV7tGNQTEOXHDIC4jo0S_0yY2-j-4mqhRQCBDf1Fy3qJq-doPXZlqqzgTLCxpPGamTP6hYFrvGuB7rJr7_ENCVwHgXgsdaLXzTab9UFNSUm1rlpmJuaspNTZrDD8Nj1aH9UnwGFQG2AkIc9XP03z_6f-sbrrugrQ</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Miao, Zhichao</creator><creator>Moreno, Pablo</creator><creator>Huang, Ni</creator><creator>Papatheodorou, Irene</creator><creator>Brazma, Alvis</creator><creator>Teichmann, Sarah A.</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7SS</scope><scope>7TK</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5988-7409</orcidid><orcidid>https://orcid.org/0000-0002-6294-6366</orcidid><orcidid>https://orcid.org/0000-0002-5777-9815</orcidid></search><sort><creationdate>20200601</creationdate><title>Putative cell type discovery from single-cell gene expression data</title><author>Miao, Zhichao ; Moreno, Pablo ; Huang, Ni ; Papatheodorou, Irene ; Brazma, Alvis ; Teichmann, Sarah A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-d40edb62ac3a72267e79667cac7b5b7161603a6e0924aa628e7c3afdbcb2dccd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/114</topic><topic>631/114/2397</topic><topic>631/114/2404</topic><topic>631/114/794</topic><topic>631/208/199</topic><topic>Animals</topic><topic>Automation</topic><topic>Bioinformatics</topic><topic>Biological Microscopy</topic><topic>Biological Techniques</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Cluster Analysis</topic><topic>Clustering</topic><topic>Datasets as Topic</topic><topic>Gene Expression</topic><topic>Gene sequencing</topic><topic>Genes</topic><topic>Genetic research</topic><topic>Ground truth</topic><topic>Humans</topic><topic>Learning algorithms</topic><topic>Life Sciences</topic><topic>Machine Learning</topic><topic>Proteomics</topic><topic>Reproducibility of Results</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA sequencing</topic><topic>RNA-Seq - methods</topic><topic>Single-Cell Analysis - methods</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miao, Zhichao</creatorcontrib><creatorcontrib>Moreno, Pablo</creatorcontrib><creatorcontrib>Huang, Ni</creatorcontrib><creatorcontrib>Papatheodorou, Irene</creatorcontrib><creatorcontrib>Brazma, Alvis</creatorcontrib><creatorcontrib>Teichmann, Sarah A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miao, Zhichao</au><au>Moreno, Pablo</au><au>Huang, Ni</au><au>Papatheodorou, Irene</au><au>Brazma, Alvis</au><au>Teichmann, Sarah A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Putative cell type discovery from single-cell gene expression data</atitle><jtitle>Nature methods</jtitle><stitle>Nat Methods</stitle><addtitle>Nat Methods</addtitle><date>2020-06-01</date><risdate>2020</risdate><volume>17</volume><issue>6</issue><spage>621</spage><epage>628</epage><pages>621-628</pages><issn>1548-7091</issn><eissn>1548-7105</eissn><abstract>We present the Single-Cell Clustering Assessment Framework, a method for the automated identification of putative cell types from single-cell RNA sequencing (scRNA-seq) data. By iteratively applying a machine learning approach to a given set of cells, we simultaneously identify distinct cell groups and a weighted list of feature genes for each group. The differentially expressed feature genes discriminate the given cell group from other cells. Each such group of cells corresponds to a putative cell type or state, characterized by the feature genes as markers. Benchmarking using expert-annotated scRNA-seq datasets shows that our method automatically identifies the ‘ground truth’ cell assignments with high accuracy. SCCAF automates the discovery of putative cell types and their feature genes using scRNA-seq data.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>32424270</pmid><doi>10.1038/s41592-020-0825-9</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-5988-7409</orcidid><orcidid>https://orcid.org/0000-0002-6294-6366</orcidid><orcidid>https://orcid.org/0000-0002-5777-9815</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1548-7091
ispartof Nature methods, 2020-06, Vol.17 (6), p.621-628
issn 1548-7091
1548-7105
language eng
recordid cdi_gale_infotracmisc_A625811119
source MEDLINE; Nature Journals Online; SpringerLink Journals - AutoHoldings
subjects 631/114
631/114/2397
631/114/2404
631/114/794
631/208/199
Animals
Automation
Bioinformatics
Biological Microscopy
Biological Techniques
Biomedical and Life Sciences
Biomedical Engineering/Biotechnology
Cluster Analysis
Clustering
Datasets as Topic
Gene Expression
Gene sequencing
Genes
Genetic research
Ground truth
Humans
Learning algorithms
Life Sciences
Machine Learning
Proteomics
Reproducibility of Results
Ribonucleic acid
RNA
RNA sequencing
RNA-Seq - methods
Single-Cell Analysis - methods
Software
title Putative cell type discovery from single-cell gene expression data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T16%3A22%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Putative%20cell%20type%20discovery%20from%20single-cell%20gene%20expression%20data&rft.jtitle=Nature%20methods&rft.au=Miao,%20Zhichao&rft.date=2020-06-01&rft.volume=17&rft.issue=6&rft.spage=621&rft.epage=628&rft.pages=621-628&rft.issn=1548-7091&rft.eissn=1548-7105&rft_id=info:doi/10.1038/s41592-020-0825-9&rft_dat=%3Cgale_proqu%3EA625811119%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2409608606&rft_id=info:pmid/32424270&rft_galeid=A625811119&rfr_iscdi=true