Putative cell type discovery from single-cell gene expression data
We present the Single-Cell Clustering Assessment Framework, a method for the automated identification of putative cell types from single-cell RNA sequencing (scRNA-seq) data. By iteratively applying a machine learning approach to a given set of cells, we simultaneously identify distinct cell groups...
Gespeichert in:
Veröffentlicht in: | Nature methods 2020-06, Vol.17 (6), p.621-628 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 628 |
---|---|
container_issue | 6 |
container_start_page | 621 |
container_title | Nature methods |
container_volume | 17 |
creator | Miao, Zhichao Moreno, Pablo Huang, Ni Papatheodorou, Irene Brazma, Alvis Teichmann, Sarah A. |
description | We present the Single-Cell Clustering Assessment Framework, a method for the automated identification of putative cell types from single-cell RNA sequencing (scRNA-seq) data. By iteratively applying a machine learning approach to a given set of cells, we simultaneously identify distinct cell groups and a weighted list of feature genes for each group. The differentially expressed feature genes discriminate the given cell group from other cells. Each such group of cells corresponds to a putative cell type or state, characterized by the feature genes as markers. Benchmarking using expert-annotated scRNA-seq datasets shows that our method automatically identifies the ‘ground truth’ cell assignments with high accuracy.
SCCAF automates the discovery of putative cell types and their feature genes using scRNA-seq data. |
doi_str_mv | 10.1038/s41592-020-0825-9 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_gale_infotracmisc_A625811119</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A625811119</galeid><sourcerecordid>A625811119</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-d40edb62ac3a72267e79667cac7b5b7161603a6e0924aa628e7c3afdbcb2dccd3</originalsourceid><addsrcrecordid>eNp1kUtLxTAQhYMovn-AGym4cVOdpGnSLvXiCwRd6DqkyfRSaZtr0or335t6faBoZpEh853hhEPIAYUTCllxGjjNS5YCgxQKlqflGtmmOS9SSSFf_-yhpFtkJ4QngCzjLN8kWxnjsSRsk_P7cdBD84KJwbZNhuUCE9sE417QL5Pauy4JTT9vMX2fz7HHBF8XHkNoXJ9YPeg9slHrNuD-x71LHi8vHmbX6e3d1c3s7DY1PCuH1HJAWwmmTaYlY0KiLIWQRhtZ5ZWkggrItEAoGddasAJlJGtbmYpZY2y2S45XexfePY8YBtVFo9GV7tGNQTEOXHDIC4jo0S_0yY2-j-4mqhRQCBDf1Fy3qJq-doPXZlqqzgTLCxpPGamTP6hYFrvGuB7rJr7_ENCVwHgXgsdaLXzTab9UFNSUm1rlpmJuaspNTZrDD8Nj1aH9UnwGFQG2AkIc9XP03z_6f-sbrrugrQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2409608606</pqid></control><display><type>article</type><title>Putative cell type discovery from single-cell gene expression data</title><source>MEDLINE</source><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Miao, Zhichao ; Moreno, Pablo ; Huang, Ni ; Papatheodorou, Irene ; Brazma, Alvis ; Teichmann, Sarah A.</creator><creatorcontrib>Miao, Zhichao ; Moreno, Pablo ; Huang, Ni ; Papatheodorou, Irene ; Brazma, Alvis ; Teichmann, Sarah A.</creatorcontrib><description>We present the Single-Cell Clustering Assessment Framework, a method for the automated identification of putative cell types from single-cell RNA sequencing (scRNA-seq) data. By iteratively applying a machine learning approach to a given set of cells, we simultaneously identify distinct cell groups and a weighted list of feature genes for each group. The differentially expressed feature genes discriminate the given cell group from other cells. Each such group of cells corresponds to a putative cell type or state, characterized by the feature genes as markers. Benchmarking using expert-annotated scRNA-seq datasets shows that our method automatically identifies the ‘ground truth’ cell assignments with high accuracy.
SCCAF automates the discovery of putative cell types and their feature genes using scRNA-seq data.</description><identifier>ISSN: 1548-7091</identifier><identifier>EISSN: 1548-7105</identifier><identifier>DOI: 10.1038/s41592-020-0825-9</identifier><identifier>PMID: 32424270</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/114 ; 631/114/2397 ; 631/114/2404 ; 631/114/794 ; 631/208/199 ; Animals ; Automation ; Bioinformatics ; Biological Microscopy ; Biological Techniques ; Biomedical and Life Sciences ; Biomedical Engineering/Biotechnology ; Cluster Analysis ; Clustering ; Datasets as Topic ; Gene Expression ; Gene sequencing ; Genes ; Genetic research ; Ground truth ; Humans ; Learning algorithms ; Life Sciences ; Machine Learning ; Proteomics ; Reproducibility of Results ; Ribonucleic acid ; RNA ; RNA sequencing ; RNA-Seq - methods ; Single-Cell Analysis - methods ; Software</subject><ispartof>Nature methods, 2020-06, Vol.17 (6), p.621-628</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2020</rights><rights>COPYRIGHT 2020 Nature Publishing Group</rights><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-d40edb62ac3a72267e79667cac7b5b7161603a6e0924aa628e7c3afdbcb2dccd3</citedby><cites>FETCH-LOGICAL-c439t-d40edb62ac3a72267e79667cac7b5b7161603a6e0924aa628e7c3afdbcb2dccd3</cites><orcidid>0000-0001-5988-7409 ; 0000-0002-6294-6366 ; 0000-0002-5777-9815</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41592-020-0825-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41592-020-0825-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32424270$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Miao, Zhichao</creatorcontrib><creatorcontrib>Moreno, Pablo</creatorcontrib><creatorcontrib>Huang, Ni</creatorcontrib><creatorcontrib>Papatheodorou, Irene</creatorcontrib><creatorcontrib>Brazma, Alvis</creatorcontrib><creatorcontrib>Teichmann, Sarah A.</creatorcontrib><title>Putative cell type discovery from single-cell gene expression data</title><title>Nature methods</title><addtitle>Nat Methods</addtitle><addtitle>Nat Methods</addtitle><description>We present the Single-Cell Clustering Assessment Framework, a method for the automated identification of putative cell types from single-cell RNA sequencing (scRNA-seq) data. By iteratively applying a machine learning approach to a given set of cells, we simultaneously identify distinct cell groups and a weighted list of feature genes for each group. The differentially expressed feature genes discriminate the given cell group from other cells. Each such group of cells corresponds to a putative cell type or state, characterized by the feature genes as markers. Benchmarking using expert-annotated scRNA-seq datasets shows that our method automatically identifies the ‘ground truth’ cell assignments with high accuracy.
SCCAF automates the discovery of putative cell types and their feature genes using scRNA-seq data.</description><subject>631/114</subject><subject>631/114/2397</subject><subject>631/114/2404</subject><subject>631/114/794</subject><subject>631/208/199</subject><subject>Animals</subject><subject>Automation</subject><subject>Bioinformatics</subject><subject>Biological Microscopy</subject><subject>Biological Techniques</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Cluster Analysis</subject><subject>Clustering</subject><subject>Datasets as Topic</subject><subject>Gene Expression</subject><subject>Gene sequencing</subject><subject>Genes</subject><subject>Genetic research</subject><subject>Ground truth</subject><subject>Humans</subject><subject>Learning algorithms</subject><subject>Life Sciences</subject><subject>Machine Learning</subject><subject>Proteomics</subject><subject>Reproducibility of Results</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA sequencing</subject><subject>RNA-Seq - methods</subject><subject>Single-Cell Analysis - methods</subject><subject>Software</subject><issn>1548-7091</issn><issn>1548-7105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kUtLxTAQhYMovn-AGym4cVOdpGnSLvXiCwRd6DqkyfRSaZtr0or335t6faBoZpEh853hhEPIAYUTCllxGjjNS5YCgxQKlqflGtmmOS9SSSFf_-yhpFtkJ4QngCzjLN8kWxnjsSRsk_P7cdBD84KJwbZNhuUCE9sE417QL5Pauy4JTT9vMX2fz7HHBF8XHkNoXJ9YPeg9slHrNuD-x71LHi8vHmbX6e3d1c3s7DY1PCuH1HJAWwmmTaYlY0KiLIWQRhtZ5ZWkggrItEAoGddasAJlJGtbmYpZY2y2S45XexfePY8YBtVFo9GV7tGNQTEOXHDIC4jo0S_0yY2-j-4mqhRQCBDf1Fy3qJq-doPXZlqqzgTLCxpPGamTP6hYFrvGuB7rJr7_ENCVwHgXgsdaLXzTab9UFNSUm1rlpmJuaspNTZrDD8Nj1aH9UnwGFQG2AkIc9XP03z_6f-sbrrugrQ</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Miao, Zhichao</creator><creator>Moreno, Pablo</creator><creator>Huang, Ni</creator><creator>Papatheodorou, Irene</creator><creator>Brazma, Alvis</creator><creator>Teichmann, Sarah A.</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7SS</scope><scope>7TK</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5988-7409</orcidid><orcidid>https://orcid.org/0000-0002-6294-6366</orcidid><orcidid>https://orcid.org/0000-0002-5777-9815</orcidid></search><sort><creationdate>20200601</creationdate><title>Putative cell type discovery from single-cell gene expression data</title><author>Miao, Zhichao ; Moreno, Pablo ; Huang, Ni ; Papatheodorou, Irene ; Brazma, Alvis ; Teichmann, Sarah A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-d40edb62ac3a72267e79667cac7b5b7161603a6e0924aa628e7c3afdbcb2dccd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/114</topic><topic>631/114/2397</topic><topic>631/114/2404</topic><topic>631/114/794</topic><topic>631/208/199</topic><topic>Animals</topic><topic>Automation</topic><topic>Bioinformatics</topic><topic>Biological Microscopy</topic><topic>Biological Techniques</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Cluster Analysis</topic><topic>Clustering</topic><topic>Datasets as Topic</topic><topic>Gene Expression</topic><topic>Gene sequencing</topic><topic>Genes</topic><topic>Genetic research</topic><topic>Ground truth</topic><topic>Humans</topic><topic>Learning algorithms</topic><topic>Life Sciences</topic><topic>Machine Learning</topic><topic>Proteomics</topic><topic>Reproducibility of Results</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA sequencing</topic><topic>RNA-Seq - methods</topic><topic>Single-Cell Analysis - methods</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miao, Zhichao</creatorcontrib><creatorcontrib>Moreno, Pablo</creatorcontrib><creatorcontrib>Huang, Ni</creatorcontrib><creatorcontrib>Papatheodorou, Irene</creatorcontrib><creatorcontrib>Brazma, Alvis</creatorcontrib><creatorcontrib>Teichmann, Sarah A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miao, Zhichao</au><au>Moreno, Pablo</au><au>Huang, Ni</au><au>Papatheodorou, Irene</au><au>Brazma, Alvis</au><au>Teichmann, Sarah A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Putative cell type discovery from single-cell gene expression data</atitle><jtitle>Nature methods</jtitle><stitle>Nat Methods</stitle><addtitle>Nat Methods</addtitle><date>2020-06-01</date><risdate>2020</risdate><volume>17</volume><issue>6</issue><spage>621</spage><epage>628</epage><pages>621-628</pages><issn>1548-7091</issn><eissn>1548-7105</eissn><abstract>We present the Single-Cell Clustering Assessment Framework, a method for the automated identification of putative cell types from single-cell RNA sequencing (scRNA-seq) data. By iteratively applying a machine learning approach to a given set of cells, we simultaneously identify distinct cell groups and a weighted list of feature genes for each group. The differentially expressed feature genes discriminate the given cell group from other cells. Each such group of cells corresponds to a putative cell type or state, characterized by the feature genes as markers. Benchmarking using expert-annotated scRNA-seq datasets shows that our method automatically identifies the ‘ground truth’ cell assignments with high accuracy.
SCCAF automates the discovery of putative cell types and their feature genes using scRNA-seq data.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>32424270</pmid><doi>10.1038/s41592-020-0825-9</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-5988-7409</orcidid><orcidid>https://orcid.org/0000-0002-6294-6366</orcidid><orcidid>https://orcid.org/0000-0002-5777-9815</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1548-7091 |
ispartof | Nature methods, 2020-06, Vol.17 (6), p.621-628 |
issn | 1548-7091 1548-7105 |
language | eng |
recordid | cdi_gale_infotracmisc_A625811119 |
source | MEDLINE; Nature Journals Online; SpringerLink Journals - AutoHoldings |
subjects | 631/114 631/114/2397 631/114/2404 631/114/794 631/208/199 Animals Automation Bioinformatics Biological Microscopy Biological Techniques Biomedical and Life Sciences Biomedical Engineering/Biotechnology Cluster Analysis Clustering Datasets as Topic Gene Expression Gene sequencing Genes Genetic research Ground truth Humans Learning algorithms Life Sciences Machine Learning Proteomics Reproducibility of Results Ribonucleic acid RNA RNA sequencing RNA-Seq - methods Single-Cell Analysis - methods Software |
title | Putative cell type discovery from single-cell gene expression data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T16%3A22%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Putative%20cell%20type%20discovery%20from%20single-cell%20gene%20expression%20data&rft.jtitle=Nature%20methods&rft.au=Miao,%20Zhichao&rft.date=2020-06-01&rft.volume=17&rft.issue=6&rft.spage=621&rft.epage=628&rft.pages=621-628&rft.issn=1548-7091&rft.eissn=1548-7105&rft_id=info:doi/10.1038/s41592-020-0825-9&rft_dat=%3Cgale_proqu%3EA625811119%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2409608606&rft_id=info:pmid/32424270&rft_galeid=A625811119&rfr_iscdi=true |