Putative cell type discovery from single-cell gene expression data

We present the Single-Cell Clustering Assessment Framework, a method for the automated identification of putative cell types from single-cell RNA sequencing (scRNA-seq) data. By iteratively applying a machine learning approach to a given set of cells, we simultaneously identify distinct cell groups...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature methods 2020-06, Vol.17 (6), p.621-628
Hauptverfasser: Miao, Zhichao, Moreno, Pablo, Huang, Ni, Papatheodorou, Irene, Brazma, Alvis, Teichmann, Sarah A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present the Single-Cell Clustering Assessment Framework, a method for the automated identification of putative cell types from single-cell RNA sequencing (scRNA-seq) data. By iteratively applying a machine learning approach to a given set of cells, we simultaneously identify distinct cell groups and a weighted list of feature genes for each group. The differentially expressed feature genes discriminate the given cell group from other cells. Each such group of cells corresponds to a putative cell type or state, characterized by the feature genes as markers. Benchmarking using expert-annotated scRNA-seq datasets shows that our method automatically identifies the ‘ground truth’ cell assignments with high accuracy. SCCAF automates the discovery of putative cell types and their feature genes using scRNA-seq data.
ISSN:1548-7091
1548-7105
DOI:10.1038/s41592-020-0825-9