Lower bounds for the index of compact constant mean curvature surfaces in [R.sup.3] and [S.sup.3]

Let M be a compact constant mean curvature surface either in [S.sup.3] or [R.sup.3]. In this paper we prove that the stability index of M is bounded from below by a linear function of the genus. As a by-product we obtain a comparison theorem between the spectrum of the Jacobi operator of M and those...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista matemática iberoamericana 2020-01, Vol.36 (1), p.195
Hauptverfasser: Cavalcante, Marcos Petrucio, Oliveira, Darlan Ferreira de
Format: Artikel
Sprache:spa
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let M be a compact constant mean curvature surface either in [S.sup.3] or [R.sup.3]. In this paper we prove that the stability index of M is bounded from below by a linear function of the genus. As a by-product we obtain a comparison theorem between the spectrum of the Jacobi operator of M and those of Hodge Laplacian of 1-forms on M. Dedicated to the memory of Professor Manfredo Perdigao do Carmo
ISSN:0213-2230
DOI:10.4171/RMI/1125