Lower bounds for the index of compact constant mean curvature surfaces in [R.sup.3] and [S.sup.3]
Let M be a compact constant mean curvature surface either in [S.sup.3] or [R.sup.3]. In this paper we prove that the stability index of M is bounded from below by a linear function of the genus. As a by-product we obtain a comparison theorem between the spectrum of the Jacobi operator of M and those...
Gespeichert in:
Veröffentlicht in: | Revista matemática iberoamericana 2020-01, Vol.36 (1), p.195 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | spa |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let M be a compact constant mean curvature surface either in [S.sup.3] or [R.sup.3]. In this paper we prove that the stability index of M is bounded from below by a linear function of the genus. As a by-product we obtain a comparison theorem between the spectrum of the Jacobi operator of M and those of Hodge Laplacian of 1-forms on M. Dedicated to the memory of Professor Manfredo Perdigao do Carmo |
---|---|
ISSN: | 0213-2230 |
DOI: | 10.4171/RMI/1125 |