Green functions and the Dirichlet spectrum
This article has results of four types. We show that the first eigenvalue $\lambda_{1}(\Omega)$ of the weighted Laplacian of a bounded domain with smooth boundary can be obtained by S. Sato's iteration scheme of the Green operator, taking the limit $\lambda_{1}(\Omega)=\lim_{k\to \infty} \Vert...
Gespeichert in:
Veröffentlicht in: | Revista matemática iberoamericana 2020-01, Vol.36 (1), p.1-36 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 36 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Revista matemática iberoamericana |
container_volume | 36 |
creator | Bessa, G. Pacelli Gimeno, Vicent Jorge, Luquesio |
description | This article has results of four types. We show that the first eigenvalue $\lambda_{1}(\Omega)$ of the weighted Laplacian of a bounded domain with smooth boundary can be obtained by S. Sato's iteration scheme of the Green operator, taking the limit $\lambda_{1}(\Omega)=\lim_{k\to \infty} \Vert G^{k}(f)\Vert_{L^2}/\Vert G^{k+1}(f)\Vert_{L^2}$ for any $f\in L^{2}(\Omega, \mu)$, $f > 0$. Then, we study the $L^{1}(\Omega, \mu)$-moment spectrum of $\Omega$ in terms of iterates of the Green operator $G$, extending the work of McDonald–Meyers to the weighted setting. As corollary, we obtain the first eigenvalue of a weighted bounded domain in terms of the $L^{1}(\Omega, \mu)$-moment spectrum, generalizing the work of Hurtado–Markvorsen–Palmer. Finally, we study the radial spectrum $\sigma^{\rm rad}(B_{h}(o,r))$ of rotationally invariant geodesic balls $B_{h}(o,r)$ of model manifolds. We prove an identity relating the radial eigenvalues of $\sigma^{\rm rad}(B_{h}(o,r))$ to an isoperimetric quotient, i.e., $\sum 1/\lambda_{i}^{\rm rad} = \int V(s)/S(s) ds$, $V(s)={\rm vol}(B_{h}(o,s))$ and $S(s)={\rm vol}(\partial B_{h}(o,s))$. We then consider a proper minimal surface $M\subset \mathbb{R}^{3}$ and the extrinsic ball $\Omega=M\cap B_{\mathbb{R}^{3}}(o,r)$. We obtain upper and lower estimates for the series $\sum \lambda_i^{-2}(\Omega)$ in terms of the volume ${\rm vol}(\Omega)$ and the radius $r$ of the extrinsic ball $\Omega$. |
doi_str_mv | 10.4171/rmi/1119 |
format | Article |
fullrecord | <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracmisc_A623445205</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A623445205</galeid><sourcerecordid>A623445205</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-4d489d9bb862da687fd677786245621bd87e8e5dbd404fb0931d5d1feb53a0853</originalsourceid><addsrcrecordid>eNptkEtLAzEUhYMoWKvgTxjQhQjT5p2ZZfFRhYIbXYdMcmNTOpmSTBf-e1PqRpS7uNzDdy6cg9A1wTNOFJmnPswJIe0JmlDKRI0lkadogilhdRHwObrIeYMx5RjjCbpfJoBY-X20Yxhirkx01biG6jGkYNdbGKu8AzumfX-JzrzZZrj62VP08fz0_vBSr96Wrw-LVW2ZUGPNHW9a13ZdI6kzslHeSaVUubiQlHSuUdCAcJ3jmPsOt4w44YiHTjCDG8Gm6Ob499NsQYfohzEZ24ds9UJSxrmg-EDN_qHKOOiDHSL4UPRfhrujwaYh5wRe71LoTfrSBOtDdbpUpw_VFfT2iEKf9WbYp1jy_sW-AYK6amQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Green functions and the Dirichlet spectrum</title><source>European Mathematical Society Publishing House</source><creator>Bessa, G. Pacelli ; Gimeno, Vicent ; Jorge, Luquesio</creator><creatorcontrib>Bessa, G. Pacelli ; Gimeno, Vicent ; Jorge, Luquesio</creatorcontrib><description>This article has results of four types. We show that the first eigenvalue $\lambda_{1}(\Omega)$ of the weighted Laplacian of a bounded domain with smooth boundary can be obtained by S. Sato's iteration scheme of the Green operator, taking the limit $\lambda_{1}(\Omega)=\lim_{k\to \infty} \Vert G^{k}(f)\Vert_{L^2}/\Vert G^{k+1}(f)\Vert_{L^2}$ for any $f\in L^{2}(\Omega, \mu)$, $f > 0$. Then, we study the $L^{1}(\Omega, \mu)$-moment spectrum of $\Omega$ in terms of iterates of the Green operator $G$, extending the work of McDonald–Meyers to the weighted setting. As corollary, we obtain the first eigenvalue of a weighted bounded domain in terms of the $L^{1}(\Omega, \mu)$-moment spectrum, generalizing the work of Hurtado–Markvorsen–Palmer. Finally, we study the radial spectrum $\sigma^{\rm rad}(B_{h}(o,r))$ of rotationally invariant geodesic balls $B_{h}(o,r)$ of model manifolds. We prove an identity relating the radial eigenvalues of $\sigma^{\rm rad}(B_{h}(o,r))$ to an isoperimetric quotient, i.e., $\sum 1/\lambda_{i}^{\rm rad} = \int V(s)/S(s) ds$, $V(s)={\rm vol}(B_{h}(o,s))$ and $S(s)={\rm vol}(\partial B_{h}(o,s))$. We then consider a proper minimal surface $M\subset \mathbb{R}^{3}$ and the extrinsic ball $\Omega=M\cap B_{\mathbb{R}^{3}}(o,r)$. We obtain upper and lower estimates for the series $\sum \lambda_i^{-2}(\Omega)$ in terms of the volume ${\rm vol}(\Omega)$ and the radius $r$ of the extrinsic ball $\Omega$.</description><identifier>ISSN: 0213-2230</identifier><identifier>EISSN: 2235-0616</identifier><identifier>DOI: 10.4171/rmi/1119</identifier><language>eng</language><publisher>Zuerich, Switzerland: European Mathematical Society Publishing House</publisher><subject>Global analysis, analysis on manifolds ; Identity ; Partial differential equations ; Setting (Literature)</subject><ispartof>Revista matemática iberoamericana, 2020-01, Vol.36 (1), p.1-36</ispartof><rights>European Mathematical Society (from 2012)</rights><rights>COPYRIGHT 2020 European Mathematical Society Publishing House</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-4d489d9bb862da687fd677786245621bd87e8e5dbd404fb0931d5d1feb53a0853</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,24032,27901,27902</link.rule.ids></links><search><creatorcontrib>Bessa, G. Pacelli</creatorcontrib><creatorcontrib>Gimeno, Vicent</creatorcontrib><creatorcontrib>Jorge, Luquesio</creatorcontrib><title>Green functions and the Dirichlet spectrum</title><title>Revista matemática iberoamericana</title><addtitle>Rev. Mat. Iberoam</addtitle><description>This article has results of four types. We show that the first eigenvalue $\lambda_{1}(\Omega)$ of the weighted Laplacian of a bounded domain with smooth boundary can be obtained by S. Sato's iteration scheme of the Green operator, taking the limit $\lambda_{1}(\Omega)=\lim_{k\to \infty} \Vert G^{k}(f)\Vert_{L^2}/\Vert G^{k+1}(f)\Vert_{L^2}$ for any $f\in L^{2}(\Omega, \mu)$, $f > 0$. Then, we study the $L^{1}(\Omega, \mu)$-moment spectrum of $\Omega$ in terms of iterates of the Green operator $G$, extending the work of McDonald–Meyers to the weighted setting. As corollary, we obtain the first eigenvalue of a weighted bounded domain in terms of the $L^{1}(\Omega, \mu)$-moment spectrum, generalizing the work of Hurtado–Markvorsen–Palmer. Finally, we study the radial spectrum $\sigma^{\rm rad}(B_{h}(o,r))$ of rotationally invariant geodesic balls $B_{h}(o,r)$ of model manifolds. We prove an identity relating the radial eigenvalues of $\sigma^{\rm rad}(B_{h}(o,r))$ to an isoperimetric quotient, i.e., $\sum 1/\lambda_{i}^{\rm rad} = \int V(s)/S(s) ds$, $V(s)={\rm vol}(B_{h}(o,s))$ and $S(s)={\rm vol}(\partial B_{h}(o,s))$. We then consider a proper minimal surface $M\subset \mathbb{R}^{3}$ and the extrinsic ball $\Omega=M\cap B_{\mathbb{R}^{3}}(o,r)$. We obtain upper and lower estimates for the series $\sum \lambda_i^{-2}(\Omega)$ in terms of the volume ${\rm vol}(\Omega)$ and the radius $r$ of the extrinsic ball $\Omega$.</description><subject>Global analysis, analysis on manifolds</subject><subject>Identity</subject><subject>Partial differential equations</subject><subject>Setting (Literature)</subject><issn>0213-2230</issn><issn>2235-0616</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNptkEtLAzEUhYMoWKvgTxjQhQjT5p2ZZfFRhYIbXYdMcmNTOpmSTBf-e1PqRpS7uNzDdy6cg9A1wTNOFJmnPswJIe0JmlDKRI0lkadogilhdRHwObrIeYMx5RjjCbpfJoBY-X20Yxhirkx01biG6jGkYNdbGKu8AzumfX-JzrzZZrj62VP08fz0_vBSr96Wrw-LVW2ZUGPNHW9a13ZdI6kzslHeSaVUubiQlHSuUdCAcJ3jmPsOt4w44YiHTjCDG8Gm6Ob499NsQYfohzEZ24ds9UJSxrmg-EDN_qHKOOiDHSL4UPRfhrujwaYh5wRe71LoTfrSBOtDdbpUpw_VFfT2iEKf9WbYp1jy_sW-AYK6amQ</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Bessa, G. Pacelli</creator><creator>Gimeno, Vicent</creator><creator>Jorge, Luquesio</creator><general>European Mathematical Society Publishing House</general><scope>AAYXX</scope><scope>CITATION</scope><scope>INF</scope></search><sort><creationdate>20200101</creationdate><title>Green functions and the Dirichlet spectrum</title><author>Bessa, G. Pacelli ; Gimeno, Vicent ; Jorge, Luquesio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-4d489d9bb862da687fd677786245621bd87e8e5dbd404fb0931d5d1feb53a0853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Global analysis, analysis on manifolds</topic><topic>Identity</topic><topic>Partial differential equations</topic><topic>Setting (Literature)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bessa, G. Pacelli</creatorcontrib><creatorcontrib>Gimeno, Vicent</creatorcontrib><creatorcontrib>Jorge, Luquesio</creatorcontrib><collection>CrossRef</collection><collection>Gale OneFile: Informe Academico</collection><jtitle>Revista matemática iberoamericana</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bessa, G. Pacelli</au><au>Gimeno, Vicent</au><au>Jorge, Luquesio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Green functions and the Dirichlet spectrum</atitle><jtitle>Revista matemática iberoamericana</jtitle><addtitle>Rev. Mat. Iberoam</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>36</volume><issue>1</issue><spage>1</spage><epage>36</epage><pages>1-36</pages><issn>0213-2230</issn><eissn>2235-0616</eissn><abstract>This article has results of four types. We show that the first eigenvalue $\lambda_{1}(\Omega)$ of the weighted Laplacian of a bounded domain with smooth boundary can be obtained by S. Sato's iteration scheme of the Green operator, taking the limit $\lambda_{1}(\Omega)=\lim_{k\to \infty} \Vert G^{k}(f)\Vert_{L^2}/\Vert G^{k+1}(f)\Vert_{L^2}$ for any $f\in L^{2}(\Omega, \mu)$, $f > 0$. Then, we study the $L^{1}(\Omega, \mu)$-moment spectrum of $\Omega$ in terms of iterates of the Green operator $G$, extending the work of McDonald–Meyers to the weighted setting. As corollary, we obtain the first eigenvalue of a weighted bounded domain in terms of the $L^{1}(\Omega, \mu)$-moment spectrum, generalizing the work of Hurtado–Markvorsen–Palmer. Finally, we study the radial spectrum $\sigma^{\rm rad}(B_{h}(o,r))$ of rotationally invariant geodesic balls $B_{h}(o,r)$ of model manifolds. We prove an identity relating the radial eigenvalues of $\sigma^{\rm rad}(B_{h}(o,r))$ to an isoperimetric quotient, i.e., $\sum 1/\lambda_{i}^{\rm rad} = \int V(s)/S(s) ds$, $V(s)={\rm vol}(B_{h}(o,s))$ and $S(s)={\rm vol}(\partial B_{h}(o,s))$. We then consider a proper minimal surface $M\subset \mathbb{R}^{3}$ and the extrinsic ball $\Omega=M\cap B_{\mathbb{R}^{3}}(o,r)$. We obtain upper and lower estimates for the series $\sum \lambda_i^{-2}(\Omega)$ in terms of the volume ${\rm vol}(\Omega)$ and the radius $r$ of the extrinsic ball $\Omega$.</abstract><cop>Zuerich, Switzerland</cop><pub>European Mathematical Society Publishing House</pub><doi>10.4171/rmi/1119</doi><tpages>36</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0213-2230 |
ispartof | Revista matemática iberoamericana, 2020-01, Vol.36 (1), p.1-36 |
issn | 0213-2230 2235-0616 |
language | eng |
recordid | cdi_gale_infotracmisc_A623445205 |
source | European Mathematical Society Publishing House |
subjects | Global analysis, analysis on manifolds Identity Partial differential equations Setting (Literature) |
title | Green functions and the Dirichlet spectrum |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T03%3A24%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Green%20functions%20and%20the%20Dirichlet%20spectrum&rft.jtitle=Revista%20matem%C3%A1tica%20iberoamericana&rft.au=Bessa,%20G.%20Pacelli&rft.date=2020-01-01&rft.volume=36&rft.issue=1&rft.spage=1&rft.epage=36&rft.pages=1-36&rft.issn=0213-2230&rft.eissn=2235-0616&rft_id=info:doi/10.4171/rmi/1119&rft_dat=%3Cgale_cross%3EA623445205%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A623445205&rfr_iscdi=true |