Green functions and the Dirichlet spectrum
This article has results of four types. We show that the first eigenvalue $\lambda_{1}(\Omega)$ of the weighted Laplacian of a bounded domain with smooth boundary can be obtained by S. Sato's iteration scheme of the Green operator, taking the limit $\lambda_{1}(\Omega)=\lim_{k\to \infty} \Vert...
Gespeichert in:
Veröffentlicht in: | Revista matemática iberoamericana 2020-01, Vol.36 (1), p.1-36 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This article has results of four types. We show that the first eigenvalue $\lambda_{1}(\Omega)$ of the weighted Laplacian of a bounded domain with smooth boundary can be obtained by S. Sato's iteration scheme of the Green operator, taking the limit $\lambda_{1}(\Omega)=\lim_{k\to \infty} \Vert G^{k}(f)\Vert_{L^2}/\Vert G^{k+1}(f)\Vert_{L^2}$ for any $f\in L^{2}(\Omega, \mu)$, $f > 0$. Then, we study the $L^{1}(\Omega, \mu)$-moment spectrum of $\Omega$ in terms of iterates of the Green operator $G$, extending the work of McDonald–Meyers to the weighted setting. As corollary, we obtain the first eigenvalue of a weighted bounded domain in terms of the $L^{1}(\Omega, \mu)$-moment spectrum, generalizing the work of Hurtado–Markvorsen–Palmer. Finally, we study the radial spectrum $\sigma^{\rm rad}(B_{h}(o,r))$ of rotationally invariant geodesic balls $B_{h}(o,r)$ of model manifolds. We prove an identity relating the radial eigenvalues of $\sigma^{\rm rad}(B_{h}(o,r))$ to an isoperimetric quotient, i.e., $\sum 1/\lambda_{i}^{\rm rad} = \int V(s)/S(s) ds$, $V(s)={\rm vol}(B_{h}(o,s))$ and $S(s)={\rm vol}(\partial B_{h}(o,s))$. We then consider a proper minimal surface $M\subset \mathbb{R}^{3}$ and the extrinsic ball $\Omega=M\cap B_{\mathbb{R}^{3}}(o,r)$. We obtain upper and lower estimates for the series $\sum \lambda_i^{-2}(\Omega)$ in terms of the volume ${\rm vol}(\Omega)$ and the radius $r$ of the extrinsic ball $\Omega$. |
---|---|
ISSN: | 0213-2230 2235-0616 |
DOI: | 10.4171/rmi/1119 |