Downregulation of endothelial nitric oxide synthase in a co-culture system with human stimulated X-linked CGD neutrophils
Phagocytes in patients with chronic granulomatous disease (CGD) do not generate reactive oxidative species (ROS), whereas nitric oxide (NO) production is increased in response to the calcium ionophore A23187 in CGD phagocytes compared with healthy phagocytes. Recently, patients with X-linked CGD (X-...
Gespeichert in:
Veröffentlicht in: | PloS one 2020-04, Vol.15 (4), p.e0230665 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Phagocytes in patients with chronic granulomatous disease (CGD) do not generate reactive oxidative species (ROS), whereas nitric oxide (NO) production is increased in response to the calcium ionophore A23187 in CGD phagocytes compared with healthy phagocytes. Recently, patients with X-linked CGD (X-CGD) have been reported to show higher flow-mediated dilation, suggesting that endothelial cell function is affected by NO production from phagocytes. We studied NOS3 and EDN1 mRNA and protein expression in human umbilical vein endothelial cells (HUVECs) in a co-culture system with neutrophils from X-CGD patients. HUVECs were co-cultured for 30 minutes with human neutrophils from X-CGD or healthy participants in response to A23187 without cell-to-cell contact. The expression of NOS3 and EDN1 mRNA in HUVECs was quantified by real-time polymerase chain reaction. Moreover, we demonstrated the protein expression of eNOS, ET-1, and NF[kappa]B p65, including phosphorylation at Ser1177 of eNOS and Ser536 of NF[kappa]B p65. Neutrophils from X-CGD patients showed significantly higher NO and lower H.sub.2 O.sub.2 production in response to A23187 than healthy neutrophils in vitro. Compared with healthy neutrophils, X-CGD neutrophils under A23187 stimulation exhibited significantly increased NO and decreased H.sub.2 O.sub.2, and promoted downregulated NOS3 and EDN1 expression in HUVECs. The total expression and phosphorylation at Ser1177 of eNOS and ET-1 expression were significantly decreased in HUVECs co-cultures with stimulated X-CGD neutrophils. Also, phosphorylation at Ser536 of NF[kappa]B p65 were significantly decreased. In conclusions, eNOS and ET-1 significantly down-regulated in co-culture with stimulated X-CGD neutrophils through their excessive NO and the lack of ROS production. These findings suggest that ROS generated from neutrophils may mediate arterial tone affecting eNOS and ET-1 expression via their NO and ROS production. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0230665 |