Co-occurrence analysis reveal that biotic and abiotic factors influence soil fungistasis against Fusarium graminearum

The current study determined the levels of soil fungistasis against a soil-borne pathogen inoculum, Fusarium graminearum (Fg, a major causal agent of Fusarium Head Blight (FHB)), in 31 wheat fields by quantifying Fg growth after a 15-day incubation period using qPCR in autoclaved versus non-autoclav...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:FEMS microbiology ecology 2019-05, Vol.95 (5), p.1
Hauptverfasser: Legrand, Fabienne, Chen, Wen, Cobo-Diaz, Francisco Jose, Picot, Adeline, Floch, Gaetan Le
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The current study determined the levels of soil fungistasis against a soil-borne pathogen inoculum, Fusarium graminearum (Fg, a major causal agent of Fusarium Head Blight (FHB)), in 31 wheat fields by quantifying Fg growth after a 15-day incubation period using qPCR in autoclaved versus non-autoclaved soils. The results were used to define the six most Fg-resistant and the six most Fg-conducive soils. By using a metabarcoding approach, the diversity of the bacterial communities was significantly higher in Fg-resistant soils than in Fg-conducive soils. Microbial taxa potentially contributing to Fg-fungistasis of soil were selected if they were significantly more prevalent and/or abundant in Fg-resistant soils than in Fg-conducive soils. Some of these candidate indicators, e.g. Pseudomonas spp. and Bacillus spp., have been reported previously as effective biocontrol agents against plant pathogens. Correlation-based network analysis further showed that the members of the bacterial communities in Fg-resistant soils were more connected than in Fg-conducive soils. Moreover, network modules was found significantly correlated with certain edaphic abiotics factors (such as the soil manganese and nitrogen content) and Fg-fungistasis. Such observations may suggest and emphasize, although conceptual, the importance of synergistic rather than individual effects of network members, and the nutrient use efficiency in contributing to Fg-resistance of soils in wheat fields in France. Keywords: fusarium graminearum; Fusarium Head Blight (FHB); molecular ecological network analysis; soil fungistasis; soil microbiome; soil suppressiveness
ISSN:0168-6496
DOI:10.1093/femsec/fz056