HARNACK'S INEQUALITY FOR THE p
One considers solutions of the p(x)-Laplacian equation in a neighborhood of a point [x.sub.0] on a hyperplane [SIGMA]. It is assumed that the exponent p(x) possesses a logarithmic continuity modulus as [x.sub.0] is approached from one of the half-spaces separated by [SIGMA]. A version of the Harnack...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2020-01, Vol.244 (2), p.116 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 116 |
container_title | Journal of mathematical sciences (New York, N.Y.) |
container_volume | 244 |
creator | Alkhutov, Yu.A Surnachev, M.D |
description | One considers solutions of the p(x)-Laplacian equation in a neighborhood of a point [x.sub.0] on a hyperplane [SIGMA]. It is assumed that the exponent p(x) possesses a logarithmic continuity modulus as [x.sub.0] is approached from one of the half-spaces separated by [SIGMA]. A version of the Harnack inequality is proved for these solutions. |
doi_str_mv | 10.1007/s10958-019-04609-y |
format | Article |
fullrecord | <record><control><sourceid>gale</sourceid><recordid>TN_cdi_gale_infotracmisc_A615360050</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A615360050</galeid><sourcerecordid>A615360050</sourcerecordid><originalsourceid>FETCH-LOGICAL-g1390-68a7d432f0e0e6c88bd08db361ad906c428c10cea6974478008e28f8b4335b3e3</originalsourceid><addsrcrecordid>eNptzE1Lw0AQBuBFFKzVP-BBAh7Ew9bZ7GY_jiGkJhhaTNODp7DZbEIkTaUbQf-9AT1YKHOY4eV5B6FbAgsCIJ4cARVIDERhYBwU_j5DMxIIiqVQwfl0g_AxpYJdoivn3mEqcUln6C4J81UYvTxsvHQVv27DLC3evOU694ok9j6u0UWje2dv_vYcbZdxESU4Wz-nUZjhllAFmEstakb9BixYbqSsapB1RTnRtQJumC8NAWM1V4IxIQGk9WUjK0ZpUFFL5-j-92-re1t2Q7MfD9rsOmfKkJOAcoAAJoVPqNYO9qD7_WCbboqP_OKEn6a2u86cLDweFSYz2q-x1Z_Olekm_29_AI5XZ-0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>HARNACK'S INEQUALITY FOR THE p</title><source>Springer journals</source><creator>Alkhutov, Yu.A ; Surnachev, M.D</creator><creatorcontrib>Alkhutov, Yu.A ; Surnachev, M.D</creatorcontrib><description>One considers solutions of the p(x)-Laplacian equation in a neighborhood of a point [x.sub.0] on a hyperplane [SIGMA]. It is assumed that the exponent p(x) possesses a logarithmic continuity modulus as [x.sub.0] is approached from one of the half-spaces separated by [SIGMA]. A version of the Harnack inequality is proved for these solutions.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-019-04609-y</identifier><language>eng</language><publisher>Springer</publisher><subject>Equality</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2020-01, Vol.244 (2), p.116</ispartof><rights>COPYRIGHT 2020 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids></links><search><creatorcontrib>Alkhutov, Yu.A</creatorcontrib><creatorcontrib>Surnachev, M.D</creatorcontrib><title>HARNACK'S INEQUALITY FOR THE p</title><title>Journal of mathematical sciences (New York, N.Y.)</title><description>One considers solutions of the p(x)-Laplacian equation in a neighborhood of a point [x.sub.0] on a hyperplane [SIGMA]. It is assumed that the exponent p(x) possesses a logarithmic continuity modulus as [x.sub.0] is approached from one of the half-spaces separated by [SIGMA]. A version of the Harnack inequality is proved for these solutions.</description><subject>Equality</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNptzE1Lw0AQBuBFFKzVP-BBAh7Ew9bZ7GY_jiGkJhhaTNODp7DZbEIkTaUbQf-9AT1YKHOY4eV5B6FbAgsCIJ4cARVIDERhYBwU_j5DMxIIiqVQwfl0g_AxpYJdoivn3mEqcUln6C4J81UYvTxsvHQVv27DLC3evOU694ok9j6u0UWje2dv_vYcbZdxESU4Wz-nUZjhllAFmEstakb9BixYbqSsapB1RTnRtQJumC8NAWM1V4IxIQGk9WUjK0ZpUFFL5-j-92-re1t2Q7MfD9rsOmfKkJOAcoAAJoVPqNYO9qD7_WCbboqP_OKEn6a2u86cLDweFSYz2q-x1Z_Olekm_29_AI5XZ-0</recordid><startdate>20200102</startdate><enddate>20200102</enddate><creator>Alkhutov, Yu.A</creator><creator>Surnachev, M.D</creator><general>Springer</general><scope>ISR</scope></search><sort><creationdate>20200102</creationdate><title>HARNACK'S INEQUALITY FOR THE p</title><author>Alkhutov, Yu.A ; Surnachev, M.D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g1390-68a7d432f0e0e6c88bd08db361ad906c428c10cea6974478008e28f8b4335b3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Equality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alkhutov, Yu.A</creatorcontrib><creatorcontrib>Surnachev, M.D</creatorcontrib><collection>Gale In Context: Science</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alkhutov, Yu.A</au><au>Surnachev, M.D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HARNACK'S INEQUALITY FOR THE p</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><date>2020-01-02</date><risdate>2020</risdate><volume>244</volume><issue>2</issue><spage>116</spage><pages>116-</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>One considers solutions of the p(x)-Laplacian equation in a neighborhood of a point [x.sub.0] on a hyperplane [SIGMA]. It is assumed that the exponent p(x) possesses a logarithmic continuity modulus as [x.sub.0] is approached from one of the half-spaces separated by [SIGMA]. A version of the Harnack inequality is proved for these solutions.</abstract><pub>Springer</pub><doi>10.1007/s10958-019-04609-y</doi><tpages>32</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1072-3374 |
ispartof | Journal of mathematical sciences (New York, N.Y.), 2020-01, Vol.244 (2), p.116 |
issn | 1072-3374 1573-8795 |
language | eng |
recordid | cdi_gale_infotracmisc_A615360050 |
source | Springer journals |
subjects | Equality |
title | HARNACK'S INEQUALITY FOR THE p |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T18%3A20%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HARNACK'S%20INEQUALITY%20FOR%20THE%20p&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Alkhutov,%20Yu.A&rft.date=2020-01-02&rft.volume=244&rft.issue=2&rft.spage=116&rft.pages=116-&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-019-04609-y&rft_dat=%3Cgale%3EA615360050%3C/gale%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A615360050&rfr_iscdi=true |