HARNACK'S INEQUALITY FOR THE p

One considers solutions of the p(x)-Laplacian equation in a neighborhood of a point [x.sub.0] on a hyperplane [SIGMA]. It is assumed that the exponent p(x) possesses a logarithmic continuity modulus as [x.sub.0] is approached from one of the half-spaces separated by [SIGMA]. A version of the Harnack...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2020-01, Vol.244 (2), p.116
Hauptverfasser: Alkhutov, Yu.A, Surnachev, M.D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:One considers solutions of the p(x)-Laplacian equation in a neighborhood of a point [x.sub.0] on a hyperplane [SIGMA]. It is assumed that the exponent p(x) possesses a logarithmic continuity modulus as [x.sub.0] is approached from one of the half-spaces separated by [SIGMA]. A version of the Harnack inequality is proved for these solutions.
ISSN:1072-3374
1573-8795
DOI:10.1007/s10958-019-04609-y