HARNACK'S INEQUALITY FOR THE p
One considers solutions of the p(x)-Laplacian equation in a neighborhood of a point [x.sub.0] on a hyperplane [SIGMA]. It is assumed that the exponent p(x) possesses a logarithmic continuity modulus as [x.sub.0] is approached from one of the half-spaces separated by [SIGMA]. A version of the Harnack...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2020-01, Vol.244 (2), p.116 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | One considers solutions of the p(x)-Laplacian equation in a neighborhood of a point [x.sub.0] on a hyperplane [SIGMA]. It is assumed that the exponent p(x) possesses a logarithmic continuity modulus as [x.sub.0] is approached from one of the half-spaces separated by [SIGMA]. A version of the Harnack inequality is proved for these solutions. |
---|---|
ISSN: | 1072-3374 1573-8795 |
DOI: | 10.1007/s10958-019-04609-y |