Use of phage [phi]6 to inactivate Pseudomonas syringae pv. actinidiae in kiwifruit plants: in vitro and ex vivo experiments
Over the last years, the global production and trade of kiwifruit has been severely impacted by Pseudomonas syringae pv. actinidiae (Psa), a phytopathogen that causes a disease in kiwifruit plants known as bacterial canker. The available treatments for this disease are still scarce, with the most co...
Gespeichert in:
Veröffentlicht in: | Applied microbiology and biotechnology 2020-02, Vol.104 (3), p.1319 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Over the last years, the global production and trade of kiwifruit has been severely impacted by Pseudomonas syringae pv. actinidiae (Psa), a phytopathogen that causes a disease in kiwifruit plants known as bacterial canker. The available treatments for this disease are still scarce, with the most common involving frequently spraying the orchards with disinfectants, copper-based bactericides and/or antibiotics. Moreover, these treatments should be avoided due to their high toxicity to the environment and promotion of bacterial resistance. Phage therapy may be an alternative approach to inactivate Psa. The present study investigated the potential application of the already commercially available bacteriophage (or phage) [phi]6 to control Psa infections. The inactivation of Psa was assessed in vitro, using liquid culture medium, and ex vivo, using artificially contaminated kiwifruit leaves with two biovar 3 (a highly aggressive pathogen) strains (Psa CRA-FRU 12.54 and Psa CRA-FRU 14.10). In the in vitro experiments, the phage [phi]6 was effective against both strains (maximum reduction of 2.2 and 1.9 CFU/mL for Psa CRA-FRU 12.54 and Psa CRA-FRU 14.10, respectively). In the ex vivo tests, the decrease was lower (maximum reduction 1.1 log and 1.8 CFU/mL for Psa CRA-FRU 12.54 and Psa CRA-FRU 14.10, respectively). The results of this study suggest that the commercially available phage [phi]6 can be an effective alternative to control Psa infections in kiwifruit orchards. |
---|---|
ISSN: | 0175-7598 1432-0614 |
DOI: | 10.1007/s00253-019-10301-7 |