Androgen dihydrotestosterone -mediated G[alpha]i protein/MAPK/MMP9 intracellular signaling
While androgens may function via nuclear androgen receptor (nAR) to increase bladder cancer (BCa) progression, the impact of androgens on muscle invasive BCa, which contains nearly 80% nAR-negative cells, remains unclear. To dissect the androgens potential impacts on these nAR-negative muscle invasi...
Gespeichert in:
Veröffentlicht in: | Oncogene 2020-01, Vol.39 (3), p.574 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | While androgens may function via nuclear androgen receptor (nAR) to increase bladder cancer (BCa) progression, the impact of androgens on muscle invasive BCa, which contains nearly 80% nAR-negative cells, remains unclear. To dissect the androgens potential impacts on these nAR-negative muscle invasive BCa, we first found that the androgens, dihydrotestosterone (DHT) might function via a novel membrane AR (mAR-SLC39A9) to increase nAR-negative BCa cell migration and invasion. Mechanism dissection revealed that DHT/mAR-SLC39A9 might function by altering G.sub.[alpha]i protein-mediated MAPK/MMP9 intracellular signaling to increase nAR-negative BCa cell migration and invasion. Preclinical studies using multiple in vitro nAR-negative BCa cell lines and an in vivo mouse model all demonstrated that targeting this newly identified DHT/mAR-SLC39A9/G.sub.[alpha]i/MAPK/MMP9 signaling with small molecules mAR-SLC39A9-shRNA or G.sub.[alpha]i-shRNA, and not the classic antiandrogens including enzalutamide, bicalutamide, or hydroxyflutamide, could suppress nAR-negative BCa cell invasion. Results from human clinical samples surveys also indicated the positive correlation of this newly identified DHT/mAR signaling with BCa progression and prognosis. Together, these results suggest that androgens may not only function via the classic nAR to increase the nAR-positive BCa cell invasion, they may also function via this newly identified mAR-SLC39A9 to increase the nAR-negative/mAR-positive BCa cell invasion. |
---|---|
ISSN: | 0950-9232 |
DOI: | 10.1038/s41388-019-0964-6 |