Exploring the effects of nanoscale zero-valent iron (nZVI) on the mechanical properties of lead-contaminated clay

Nanoscale zero-valent iron (nZVI) is a well-known efficient nanomaterial for the immobilization of heavy metals and has been widely applied in the remediation of contaminated groundwater and soils. In this study, a series of field emission scanning electron microscopy (FESEM) analyses, vane shear te...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Canadian geotechnical journal 2019-10, Vol.56 (10), p.1395-1405
Hauptverfasser: Chen, Yong-Zhan, Zhou, Wan-Huan, Liu, Fuming, Yi, Shuping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nanoscale zero-valent iron (nZVI) is a well-known efficient nanomaterial for the immobilization of heavy metals and has been widely applied in the remediation of contaminated groundwater and soils. In this study, a series of field emission scanning electron microscopy (FESEM) analyses, vane shear tests, triaxial compression tests, and oedometer tests was conducted on lead-contaminated clay using four dosages of nZVI treatment (0.2%, 1%, 5%, and 10%). The geotechnical properties, including basic index properties, stiffness, shear strength, and compressibility, were assessed after the reaction procedure. FESEM analysis was performed to explore the potential mechanisms of nZVI treatment in terms of morphological characteristics. It was found that the plasticity index decreased gradually with increasing nZVI dosage. Treating contaminated soil with nZVI caused an increase in the vane shear strength, stiffness, and friction angle. The compression index increased gradually because of the nZVI treatment. Based on the FESEM analysis, a conclusion can be deduced that larger aggregates and conjoined structures resulting from nZVI treatment can lead to the strengthening of lead-contaminated clay.
ISSN:0008-3674
1208-6010
DOI:10.1139/cgj-2018-0387